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Image, speech, and ADS-B 
trajectory datasets for terminal 
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We introduce TartanAviation, an open-source multi-modal dataset focused on terminal-area airspace 
operations. TartanAviation provides a holistic view of the airport environment by concurrently collecting 
image, speech, and ADS-B trajectory data using setups installed inside airport boundaries. The datasets 
were collected at both towered and non-towered airfields across multiple months to capture diversity 
in aircraft operations, seasons, aircraft types, and weather conditions. In total, TartanAviation provides 
3.1M images, 3374 hours of Air Traffic Control speech data, and 661 days of ADS-B trajectory data. 
In addition to the raw data, we provide post-processed versions with synchronized, filtered, and 
interpolated data. In addition to the dataset, we also open-source the code-base used to collect and 
pre-process the dataset, further enhancing accessibility and usability. We believe this dataset has many 
potential use cases and would be particularly vital in allowing AI and machine learning technologies to 
be integrated into air traffic control systems and advance the adoption of autonomous aircraft in the 
airspace.

Background & Summary
In 2023, an average of 45,000 flights per day served over 2.9 million passengers in the US1, which is nearly at the 
saturation capacity of the current US air traffic control system2. The expected introduction of Advanced Aerial 
Mobility (AAM) operations within the National Airspace System heralds a further increase in flight operations, 
necessitating a need to increase the airspace capacity3. Compared to en-route airspace, terminal areas experi-
ence a higher air traffic density as nearly all aerial operations start or end within these areas. The effective future 
management of this high-risk airspace necessitates insights into various aspects of air traffic management. In 
addition to manned AAM operation, data is needed to achieve advances in fully or partially autonomous AAM 
agents. Curated datasets within this domain not only enable analytical research into understanding how the sys-
tem is currently managed but also help accelerate the development of novel technologies for future operations. 
More generally, the aviation domain presents newer challenges to widely applied technologies like vision-based 
object detection, speech-to-text translation, and time-series analytics. Advancements in AI and machine learn-
ing can potentially revolutionize air traffic control systems, ensuring safer and more efficient coordination for 
the ever-increasing number of flights.

In this work, we introduce TartanAviation, a multi-modal dataset collected at towered and non-towered ter-
minal areas within the US. The TartanAviation dataset covers three primary concurrently collected modalities of 
data: trajectory positions for capturing the spatial and temporal information of aircraft movements, video flight 
sequences collected with static cameras installed within terminal areas, and audio communications to document 
the voice interactions between pilots and air traffic controllers. While prior datasets in the aviation domain have 
focused on specific modalities like speech4,5 or vision6,7, TartanAviation aims to provide a more holistic view of 
terminal airspace operations across various data modalities. Additionally, while previous datasets focus on large 
commercial airports, TartanAviation focuses on smaller regional airports within the Greater Pittsburgh area. 
Regional airports serve a multitude of different aircraft and mission profiles, providing a richer and more diverse 
data stream. We specifically focus on two airports: the towered Allegheny County Airport (ICAO:KAGC) and 
the non-towered Pittsburgh-Butler Regional Airport (ICAO:KBTP).
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Human vision is the last line of defense against mid-air collisions, making it critical for aviation safety8. With 
recent advances in computer vision technologies, visual detect-and-avoid (DAA) systems have shown promis-
ing results in detecting airborne objects at greater distances9. Prior datasets for DAA either lack diversity7, are 
computer-generated6, or are relatively small10,11.

In this context, the TartanAviation vision dataset is a large-scale real-world dataset collected by placing static 
cameras within the terminal area. TartanAviation currently offers 3.1 million images covering challenging sce-
narios like snow, mist, rain, varying cloud cover, and diverse aircraft types. The data is augmented with the 
associated weather and air traffic trajectory data. With over 700k aircraft labels, these challenging real-world 
scenarios promise to enable more research in robust computer vision techniques for long-range object detection.

Trajectory data represents the time-series information of aircraft positions operating within the terminal air-
space. This data is collected by recording Automatic Dependent Surveillance-Broadcasts (ADS-B) using receiv-
ers placed within the terminal area. ADS-B is an aviation surveillance technology where aircraft automatically 
broadcast their position and other data using GNSS satellite navigation, enabling tracking by air traffic control 
and nearby aircraft without ground interrogation. It is a key component of global air traffic systems and is man-
datory in several countries for enhanced safety and efficiency. Prior studies have looked into the performance 
of ADS-B including its accuracy, integrity, continuity and availability12 as well as its use in sequencing the opti-
mal landing order for arriving flights.13 Our prior work, TrajAir14, provided 111 days of ADS-B data at KBTP. 
TartanAviation extends this tally to a total of 661 days of data at both KBTP and KAGC. Beyond the aviation 
domain, trajectory data can enable more research in time-series forecasting, social trajectory prediction, and 
anomaly detection.

Radio communications enable pilots and Air Traffic Controllers (ATC) to share time-sensitive intent and 
instructions over dedicated frequencies. The information included in these communications helps pilots and 
ATC to build situational awareness, enabling the safe operation of aircraft on the ground and in the air. Radio 
communication within aviation use both High-Frequency (HF) as well as Very-High-Frequency (VHF) bands. 
While HF is mostly used for long-range communication, for example in oceanic flights, VHF is preferred for 
short to medium range communication. A VHF radio operates on frequencies between 118.0 megahertz (MHz) 
and 136.975 MHz15. While most speech datasets are unimodal16, recent multi-modal datasets with text and 
trajectory17 have focused exclusively on commercial aircraft operations at large airports. TartanAviation pro-
vides first-of-its-kind speech data at relatively smaller airports, including both towered and untowered airfields. 
Along with the diversity in speech data, TartanAviation also provides concurrent trajectory data, enabling novel 
research in multi-modal speech-to-text translation and speech-to-intent predictions18 conditioned on external 
context.

All of the data in TartanAviation was collected with administrative support and prior authorization at both 
the KAGC and KBTP airports. TartanAviation represents our first step at building a centralized comprehensive 
multi-modal repository for aircraft data within the terminal airspace.

Method
This section briefly overviews the equipment and protocols used to collect the datasets. Figure 2 shows the 
setup and an overview of the data collection pipeline. Prior to data collection, the Carnegie Mellon University 
Institutional Review Board (IRB) determined that this project does not involve human subjects research, as 
defined by federal regulations. In the United States, ADS-B transmissions and ATC communications are publicly 
accessible broadcasts. According to 18 U.S.C. § 2511(2)(g)(ii)(IV)19, it is lawful to intercept radio communica-
tions transmitted by any marine or aeronautical communications system. Similar rules apply for ADS-B trans-
missions20. Therefore, recording and sharing ADS-B data and ATC communications are permissible under U.S. 
law. Researchers in other jurisdictions should consult local laws and regulations, as the legality of recording and 
sharing such data may vary.

Fig. 1  Our custom data collection setup installed at the Allegheny County Airport with its approximate 
location within the airport premises with respect to the runway geometry. The setup recorded images, audio, 
and aircraft trajectory data.
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Vision Data Acquisition.  The vision data was exclusively collected at the KAGC airport. The setup was 
mounted at 40.351422 latitude, -79.923939 longitude, as shown in Fig. 1. The vision setup uses an array of Sony 
IMX 264 cameras connected to a NVIDIA Xavier AGX 32GB dev kit via a LI-JXAV-MIPI-ADPT-6CAM camera 
adaptor. The cameras collect data at 2048 × 2448 resolution at 24 Frames Per Second (FPS). The camera record-
ings were triggered using ADS-B data by enforcing an 8 km fence around the setup. If an aircraft crosses the 
threshold, the camera automatically starts recording. The recording stops either at the end of a 250-sec timer or 
if the aircraft exits the 8 km fence. A new recording is activated if the recording times out before the aircraft exits. 
This process repeats till the aircraft leaves the geo-fence. To ensure seasonal diversity, data collection occurred in 
multiple phases from December 14, 2021, to February 23, 2023, from sunrise to sunset.

Post-Processing.  As shown in Table 2, along with the raw camera output, TartanAviation offers various useful 
meta-data, including ADS-B and bounding box labels.

For ADS-B, each recorded video sequence has a PKL file that contains the GPS coordinates of all flying 
aircraft in the area at the specific time of recording. The ADS-B data also provides the unique flight ID and 
N-number (if provided by the pilot to the ADS-B) per aircraft. The unique flight ID and the N-number of the air-
craft are used to parse the FAA N-number registry inquiry website. Furthermore, we obtain the ADS-B data and 
interpolate it to obtain ground truth information matching the frequency of the camera recording, i.e., 24 Hz.

For the bonding box labels, each recorded video sequence has a zip file containing the label files for individ-
ual video frames. The labels are text files, where each row provides the bounding box information for a flying 
aircraft in the video. In particular, the label files include the bounding box coordinates for the aircraft in the 
image, a unique track ID for each aircraft, the range of the aircraft, the manufacturer, type, and model.

We leverage two main modules to generate the bounding box labels: (a) Auto-labeling and (b) Manual label 
verification/generation. The Auto-labeling module is performed in two stages. The first stage uses our deep 
learning-based aircraft detection & tracking system, AirTrack9, to obtain initial bounding box hypotheses. 
Despite not having perfect recall, this stage makes labeling bounding boxes easier and reduces the amount of 
manual labor required downstream. The second stage projects the 3D ADS-B data into the image frame using 
the calibrated extrinsics to provide an initial estimate of the aircraft position in the image. This projection helps 
filter false positives from the detector and provides the initial airborne object location to the labeler. Once the 
auto-labeling procedure is finished, we manually verify the image labels frame-by-frame and make any neces-
sary corrections using our custom labeling software.

Fig. 2  Our custom setup hardware with the camera and ADS-B antenna mounts (left). We also showcase the 
data collection pipeline with the associated sensor suite and automatic logic that triggers camera and speech 
recordings (right).

Extension Nomenclature Content

.zip <camera_id>_<timestamp> Zip folder containing sequence data

↪ .mp4 <camera_id>_<timestamp> Video File

↪ .avi <camera_id>_<timestamp>_sink_verified Video File with embedded labels

↪ .srt <camera_id>_<timestamp>_subtitle Raw timestamps of the recorded video

↪ .pkl <camera_id>_<timestamp>_sink_adsb Raw ADS-B dictionary

↪ .pkl <camera_id>_<timestamp>_acft_sink Raw aircraft type data

↪ .zip <camera_id>_<timestamp>_labels Zip folder containing the image labels

↪ ↪ .label <frame_number>.label Text file containing label data

Table 1.  File structure information for TartanAviation image data.
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The system used in the Auto-labeling module, AirTrack9, consists of modules for ego-aircraft motion estima-
tion, detection and tracking, and secondary classification to filter out false positives. The inputs are two succes-
sive grayscale image frames ∈−

×I I,t t
H W

1  where H × W are the dimensions of the input frames. We utilize 
the full image resolution of 2048 × 2448 during inference to maximize the chances of detection at long ranges. 
The outputs are a list of tracked objects with bounding box coordinates, track ID, 2D Kalman filtered state, esti-
mated range, angular rate, and time to closest point approach (tCPA). We then filter out false positive detections 
by projecting the ADS-B data into the image frame and ensuring that the projected ADS-B coordinates lie within 
a 100 pixel radius of the predicted image bounding box. Whenever we have false negatives from the model, we 
manually add in the bounding box label if the aircraft is visible in the image.

For the ADS-B data projection, we assume that the 4-camera setup is located at the origin of a 
north-east-down (NED) world reference frame where the positive z-axis points towards the earth’s center and 
the positive x-axis points towards True North. Given all the relevant information, such as GPS coordinates and 
altitudes, we can compute the 3D position of aircraft using geodesics. The corresponding image frame location 
in homogeneous coordinates for camera i (i = 1, …, 4) is given by the following perspective projection: 
pi = Ki[Ri|ti]P, where Ki is a known 3 × 3 intrinsic matrix for camera i, [Ri|ti] constitutes the 3 × 4 extrinsic 
matrix of camera i, and ∈ P 3 is the aircraft 3D position in the world reference frame. In particular, we use the 
PnP-RANSAC algorithm to estimate [Ri|ti]. Using time synchronization, the 2D correspondences for the 
recorded 3D observations are manually labeled using custom labeling software. Since the setup is static, this is a 
one-time calibration step that gives us the projection matrix for camera i, with which we can project new 3D 
aircraft data.

Trajectory and Weather Data Acquisition.  The trajectory and weather data are collected at both the 
KAGC and KBTP airports. Data collection follows similar procedures as our prior ADS-B dataset14. We use a 
Stratux ADS-B receiver capable of receiving position reports on both the 1090 MHz and 978 MHz frequencies. 
The receiver was installed within the terminal area of each airport. The recording operation ran from 1:00 AM 
to 11:00 PM local time, a period selected to encapsulate the full range of aviation operations during both peak 
and off-peak hours. Data collection at KBTP started on September 18, 2020 and concluded on October 27, 2022. 
Data collection at KAGC began on October 31, 2021 and ended on February 17, 2023. Data was collected in dis-
crete phases, resulting in 381 days or 36 million raw position reports of data at KBTP and 280 days or 27 million 
raw position reports of data at KAGC. Weather reports for the corresponding airports are collected post hoc in 
the form of METeorological Aerodrome Reports (METAR) strings. We use the Iowa State METAR repository21 
to compile reports for the duration of the ADS-B data. METAR reports are typically issued hourly, but the fre-
quency can vary based on specific station protocols and prevailing weather conditions. Some stations release 
reports more frequently, such as three times per hour, especially when significant meteorological changes occur. 
Additionally, special reports, known as SPECIs, are generated in response to notable weather events or changes22. 
The total file size of the audio dataset is 1.9 GB compressed and 12 GB uncompressed.

Post-processing.  The raw ADS-B data is first post-processed to remove corrupted and duplicate data points. 
The data is then filtered for altitude and distance from the airport. We nominally chose 6000 ft MSL and a 5 km 
radius around the airport. Once filtered, the data is transformed from a global to a local Cartesian coordinate 
frame in SI units with the origin at the end of the runway. The raw METAR strings are also processed to get wind 
velocity and direction relative to the runway in the local frame. Finally, we interpolate the trajectory data every 
second for all agents. TartanAviation provides the processed data along with the raw trajectory and weather data.

Speech Data.  The speech data is collected at both the KAGC and KBTP airports. The setup uses a Bearcat 
SR30C radio receiver capable of receiving aviation radio frequencies. For towered KAGC, the radio is tuned to 
receive 121.1 MHz, the air traffic control tower frequency for KAGC operations. KAGC has an active tower 24 
hours a day. For KBTP, the radio was tuned to 123.05 MHz, the Common Traffic Advisory Frequency for KBTP 
operations. The audio is recorded at a rate of 44.1k samples per second onboard the system. The record trigger 
mechanism for the speech setup is similar in construction to the vision setup and uses ADS-B data to trigger 
recordings. The trigger threshold was set to 10 km. The corresponding raw ADS-B data is also provided for the 
communication recordings spanning multiple years for both airports. The communication data from KBTP starts 
on September 6 2020 and ends on October 27 2022. After filtering, this data comprises 278 days of data, corre-
sponding to 790 GB of disk space. The communications data for KAGC starts on October 31, 2021 and ends on 
February 17, 2023. The KAGC data comprises 392 days of data, corresponding to 1358 GB of disk space. In total, 
the dataset contains 670 days of raw communications recordings. The total file size of the audio dataset is 2.15 TBs 
uncompressed and 505.2 GB compressed.

Post-processing.  We filtered the raw recordings using two conditions: audio clips must be longer than 1 second 
and have a maximum decibel level above -20 db. This removes erroneous recordings and clips that don’t contain 
any spoken words. The KAGC audio has 33289 audio files comprising 2131.9 hours of audio, with 327.714 hours 
above -20 db. The KBTP audio has 8534 files and 1242.9 hours of audio, with 149.9 hours above -20 db. This 
gives a total of 41823 files, 3374.8 hours of audio, and 477.6 hours of audio above -20 db.

Data Records
The dataset23 is stored on open access servers maintained by Carnegie Mellon University School of Computer 
Science and is available using the download scripts hosted on https://github.com/castacks/TartanAviation.
git[https://doi.org/10.5281/zenodo.14699102]. We provide Python scripts to enable data download of each 
modalities, including support for sample and partial data. These scripts provide a platform-agnostic way to 
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download these datasets. Each of the modalities also have documentation that list any dependencies required 
to execute the scripts.

Additional information about the raw and processed data for all the modalities is available at https://theair-
lab.org/tartanaviation. The following sections present details on the data formats and provide information on 
file organization.

Image Data.  The image dataset is split across 550 independent sequences. We define a sequence as all of the data 
recorded during a single event where the camera recordings were started and stopped. The vision data folder contains 
multiple zipped files, each associated with a particular camera recording for that sequence. Each zipped sequence folder 
has multiple files, as presented in Table 1. Further information regarding the nomenclature and file contents is also 
shown in Table 1. In addition to the video files and labels, we also provide ADS-B data for each sequence.

Trajectory and Weather Data.  TartanAviation provides both raw and processed data for each airport. 
Raw data is separated into individual folders for each day of collection. Each raw data folder has CSVs with fields 
detailed in Table 2. The processed files are available as comma-separated TXT files with fields described in 2.

Raw Data Fields Processed Data Fields

Field Units Description Field Units Description

ID # ADS-B Aircraft ID Frame # Relative Timestep

Time HH:MM:SS.ss Time of observation ID # ADS-B Aircraft ID

Date MM/DD/YYY Date of observation x km Local X Cartesian Position

Altitude Feet Aircraft Altitude (Mean Sea Level) y km Local Y Cartesian Position

Speed Knots Aircraft Speed z km Local Z Cartesian Position

Heading Degrees Aircraft Heading wx m/s Component of wind along the dominant runway

Lat Decimal Degrees Latitude of the aircraft

Lon Decimal Degrees Longitude of the aircraft wy m/s Component of wind across the dominant runway

Age Seconds Time since last observation

Range km Distance from airport centre

Bearing Degrees Bearing Angle with respect to North

Tail Aircraft Registration Number

AltisGNSS boolean Indicator flag for Altitude Measurement

Table 2.  Variable description for the TartanAviation ADS-B trajectory data.

Fig. 3  Qualitative samples from the TartanAviation Image dataset showcasing the diversity of the collected 
images in different lighting conditions, seasons, cloud covers, and aircraft types.
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Speech Data.  Both the raw and filtered audio files are included in the dataset. The filtered data is organized in 
a directory structure by location, year, month, and day. Each day is individually zipped, contains audio files in the 
WAV format, and has an accompanying text file that contains the audio clip’s start, end, and total time.

Technical Validation
To ensure the reliability of our dataset, we employed tailored validation methods for each data modality: For 
ADS-B trajectory data, we conducted a comprehensive analysis by plotting and examining the entire processed 
dataset to identify any anomalies or inconsistencies. For speech data, we validated selected samples through 
detailed spectrogram analyses to ensure that vital speech frequencies were adequately captured. For image data, 
we performed both qualitative and quantitative assessments using selected samples and metadata from the entire 
dataset to showcase its diversity and quality. By implementing these modality-specific validation techniques, we 
ensured the overall integrity and robustness of our dataset.

Fig. 5  Log-normed trajectory histograms from ADS-B aircraft position reports at Pittsburgh-Butler Regional 
Airport.

Fig. 4  Log-normed trajectory histograms from ADS-B aircraft position reports at Allegheny County Airport.
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Image Data.  Figure 3 shows example images from the dataset. The subset highlights the variation in lighting 
conditions, seasons, cloud covers, cloud heights, and aircraft types. The tightly labeled bounding boxes provided 
with each image are also shown. The scale of the bounding boxes with respect to the total image size highlights the 
challenge faced by object detection algorithms trying to reliably detect aircraft in a cluttered background. Figure 6 
shows quantitative results for the entire dataset. To showcase the diversity in aircraft, we group the images based 
on single-engine land (SEL), multi-engine land (MEL), and Rotorcraft (rotor). This shows an almost equal distri-
bution in the dataset with SEL as the major class with 56%. Further, we group the images based on the recorded 
cloud height. Cloud height has a direct impact on the available lighting. While 56.4% of the images have no clouds 
in them, 5.6% of images have very low cloud layers below 2000 feet above ground level (AGL). Grouping the 
images by cloud coverage, we observe that while 56.4% of data has no clouds, 12.2% of data has overcast skies. In 
addition to this, 6.4% of data has active precipitation while 12.4 % of data has visibility less than 10 statute miles.

Trajectory Data.  Figure 5 and Fig. 4 showcase trajectory histograms for the KAGC and KBTP Airports. 
The histograms represent the aircraft occupancy frequencies on a log scale around both airports. The airport 
is at the center in both images, with the geographic north pointing upwards. The effect of runway geometries is 
clearly visible. Figure 5 shows the 08/26 KBTP runway while Fig. 4 shows the crossing smaller 13/31 and larger 
10/28 runways at KBTP. Also clearly visible are the different types of operations at both airports Figure 6. KBTP 
is an un-towered airport and home to a few flight schools. The left traffic patterns for both runways are clearly 
visible, highlighting the adherence to FAA guidelines when operating in an un-towered airfield. KAGC, on the 
other hand, is a towered airfield that hosts medical evacuation helicopters and business jet traffic in addition to 
flight schools. This leads to more straight-line arrivals and departures from the airport runways, as reflected in 
the figure.

Fig. 6  Quantitative diversity from the TartanAviation Image dataset showcasing the distribution of the 
collected images with respect to aircraft groups, cloud heights, and cloud cover.

Fig. 7  A portion of the spectrogram and waveform for audio file 6.wav from KBTP on November 2, 2020. The 
spectrogram shows the frequency of the audio signal versus time. In the time period of this figure, it is clear 
when the pilot is speaking, which can be seen as the higher intensity portion of the spectrogram and the spikes 
in amplitude in the waveform.
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Speech Data.  Our filtering of the audio data ensures that empty files are discarded while any that could con-
tain speech data are included. The threshold of -20 db was chosen to preserve any audio louder than radio silence. 
Figure 7 shows a portion of the spectrogram and waveform of one of the audio files from our dataset, specifically 
6.wav from KBTP on November 2, 2020. It is apparent in the spectrogram where the pilot is speaking and where 
there is radio silence. Furthermore, some low-intensity noise during radio silence occurs at clear intervals and 
shows up as vertical lines with even spacing. During the speaking portion of the audio, there is a clear spike in 
intensity between all bands, with the highest being between 0-3 kHz. The human ear is highly sensitive in fre-
quencies between 1-4 kHz, with the sensitivity dropping off steeply to the limit of around 20 kHz24. Research in 
the interpretability of speech finds that the values below 4 kHz yield high accuracy in articulation25. The spectro-
gram shows these vital frequencies for speech data are recorded sufficiently.

Usage Notes
In generating and post-processing TartanAviation, care was taken to organize data in formats commonly 
accepted by respective communities. This leads to hassle-free integration with existing dataloaders for specific 
tasks like vision-based small object detection and trajectory prediction. Pytorch Dataloaders for vision-based 
object detection are also provided in the supplementary codebase released with the manuscript. The data is 
available on high throughput servers without a paywall or any other access restrictions to enable widespread 
utilization. The provided download scripts ensure that the dataset can be downloaded in user-specified 
chunks to enable processing on local machines as well as large-scale servers. The modalities can be used inde-
pendently or in conjunction. TartanAviation not only challenges the existing methods for established tasks like 
speech-to-intent prediction, object detection, and trajectory prediction but also opens up exciting avenues for 
leveraging multi-modal data in the context of aviation.

Code availability
The scripts to record, post-process and download each modality are publicly available at https://github.com/
castacks/TartanAviation.git.
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