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Abstract
This work introduces PoKER, a novel probabilistic model engineered to optimize missile launch effectiveness in air-to-air
scenarios, specifically within Beyond Visual Range (BVR) air combat. Unlike conventional Weapon Engagement Zone
(WEZ) models that delineate zones based on static distances such as maximum, minimum, and no-escape ranges, PoKER
applies machine learning to predict kill probabilities more accurately by integrating the stochastic behaviors of targets
and missile miss distances. This model dynamically evaluates target behavior, greatly expanding the predictive capabilities
of engagement analysis. By factoring in elements such as warhead lethality, target and shooter orientations, and the
specific conditions of engagement, PoKER provides important insights into engagement dynamics and quantifies success
probabilities. Consequently, it can potentially be an important tool for BVR air combat pilots, improving operational
decision-making within this specialized combat domain.
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1. Introduction

Missile systems hold a critical position in contemporary

military operations,1 providing an effective means to

engage aerial targets over extensive distances, particularly

significant in the context of Beyond Visual Range (BVR)

air combat. BVR air combat refers to aerial engagements

that occur at distances beyond the visual sight of the pilots,

typically over tens of kilometers. In these scenarios, air-

craft rely on advanced radar, sensors, and long-range mis-

siles to detect, track, and engage opponents without the

need for visual identification.2 The evolving landscape of

BVR air combat, driven by recent advancements in detec-

tion and missile technology, underscores the necessity for

sophisticated Weapon Engagement Zone (WEZ) models.3

These models, essential for evaluating the operational effi-

cacy of air-to-air missiles, bring about complex computa-

tions of maximum and minimum engagement ranges

alongside the identification of No Escape Zones (NEZ).4

Notably, these computations are usually dynamically exe-

cuted in real-time during flight, factoring in the orienta-

tions of both the target and the shooter.5

WEZs are not simply geometric boundaries determined

by orientations and positions; they also take into account

the dynamics and maneuverability of both the target and

shooter, along with their weapons systems.2 The insights

derived from WEZ calculations may be relayed to pilots

through heads-up or heads-down displays,6 which may

empower them to make more informed decisions regarding

missile launches with increased precision and confidence.7
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The definition of WEZ can incorporate concepts such

as long and short limits or maximum and minimum ranges,

whose interpretations might slightly vary between coun-

tries.8 To exemplify, we present two common nomencla-

tures, as depicted in Figure 1, to evidence their nuances,

mostly with respect to enemy maneuverability. Some

armed forces use Long Limit 0 (LL0) to delineate the furth-

est kinematic reach of a missile, where it uses up all its

energy just to activate its proximity fuse upon reaching the

target. Similarly, Maximum Range (Rmax, 1) indicates the

maximum distance a missile can effectively engage a pas-

sive target, with its success probability decreasing if the

target maneuvers to increase flight distance. Long Limit 1

(LL1) specifies the range within which a missile can effec-

tively counteract a target’s ultimate evasion efforts with

maximum performance. Alternatively, Rmax, 2 introduces

the beginning of the NEZ, which represents a range within

which the missile is expected to hit, barring specific defen-

sive actions by the target, though escape is still possible

through engine maneuvers or missile countermeasures.

Finally, the Short Limit (LC)/Rmin marks the closest dis-

tance at which a missile’s fuze can arm.

Even though these concepts provide a general idea of

where to engage a target, depending on rules of engage-

ment and shot philosophies,9,10 these regions may still be

quite extreme, not accounting for what happens in between

them, which makes it difficult for pilots to choose the best

moment to launch a missile in order to maximize the

chances of success. This is aggravated by the fact that the

opposing aircraft may maneuver unpredictably. Amid

these complex considerations, it becomes essential to con-

duct detailed simulations to improve operational readiness

and tactical accuracy, analyzing missile efficacy in diverse

engagement scenarios, which include different adversarial

reactions to missile threats. In this research, we introduce

a novel WEZ model tailored to improve the assessment of

missile performance after launch, specifically in the

case of an Active Radar Homing (ARH) weapon system

utilized in BVR air combat. Leveraging insights from

prior work, we present an R-based simulator based on a

5-degree-of-freedom (5-DOF) model.11

ARH, or Active Radar Homing, refers to a guidance

method used in missile systems, where the missile itself is

equipped with a radar seeker that actively emits radar sig-

nals to detect and track its target independently. This type

of homing provides the missile with greater autonomy after

launch, reducing the need for continuous guidance from

the launching platform and enabling effective engagement

of targets in BVR air combat scenarios.

Our simulator encapsulates the complexities of an ARH

missile, including its radar seeker functionality and auton-

omous target-tracking capability, enabling rigorous analy-

sis and prediction of its performance across various

operational parameters. By exploring the nuances of

missile-target interactions with an active radar seeker, our

simulator provides valuable insights into BVR air combat

dynamics, aiding in the formulation of strategic and tacti-

cal decisions.

Furthermore, we explore the domain of warhead

lethality, offering insights into the calculation of the

proximity-fuzed warhead’s conditional probability of tar-

get destruction, a critical component in assessing missile

effectiveness. In addition, we focus on generating and

preprocessing simulation data, proposing a supervised

machine learning methodology to develop regression

models capable of predicting missile kill probabilities.

We carefully evaluate various algorithms’ efficacy and

computational efficiency, illuminating their suitability for

real-world applications.

The main contribution of this work is as follows:

Development of the Probability of Kill Estimation Rate

(PoKER) model: Designed to provide enhanced situa-

tional awareness in dynamic air-to-air combat scenar-

ios, particularly in BVR air combat settings.

The specific contributions that support the development

and application of the PoKER model are as follows:

• Complementation of WEZ with kill probability esti-

mation: Addressing the gap in traditional weapon

engagement analysis by providing an estimation of

the probability of kill when launching air-to-air

missiles, incorporating real-time conditions of both

the launcher and the target for a more comprehen-

sive understanding of engagement success.

Figure 1. Diagram illustrating aerial combat WEZ, detailing
ranges for missile engagement from maximum kinematic reach
to minimum arming distance, including the airspace where the
target has limited evasion options.
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• Modeling target decisions: Integration of potential

adversary maneuvers using high-fidelity models of

aircraft and missiles, allowing for flexibility rather

than relying on fixed target profiles and predefined

launcher strategies.
• Simulation and machine learning integration:

Utilization of well-designed simulation tools and

machine learning to deepen the understanding of

missile engagement dynamics.
• Warhead lethality model: Inclusion of a warhead

lethality model that estimates the probability of kill

(Pkill) based on missile miss distance and a dynamic

model of the opponent’s behavior, substantially

improving tactical decision-making and enhancing

operational capabilities in BVR air combat.

In summary, the primary focus of the PoKER model is

to enhance situational awareness in dynamic BVR engage-

ments, marking an initial step toward the development of

probabilistic models for weapon engagement analysis.

This work offers a novel methodological contribution,

advancing beyond traditional WEZ analysis by incorporat-

ing real-time probabilistic assessments and accounting for

the dynamic interactions between the launcher and the tar-

get. Furthermore, the insights gained from this model

could be leveraged in the future to support decision-

making processes, enabling more informed tactical deci-

sions in complex air combat scenarios.

The remainder of this document is organized as fol-

lows. The ‘‘Related work’’ section provides an overview

of the literature pertinent to our study and introduces criti-

cal terminology. The ‘‘Methodology’’ section delineates

our approach, outlining each of its steps and the employed

tools and techniques. The ‘‘Results and analysis’’ section

showcases and discusses the findings derived from the

application of our methodology. The ‘‘Conclusion and

future work’’ section summarizes our approach and its

outcomes while also highlighting potential avenues for

future research.

2. Related work

The success of BVR air combat heavily relies on the seam-

less integration of offensive and defensive tactics sup-

ported by accurate and timely information. Consequently,

numerous research efforts have focused on enhancing tacti-

cal decision-making through advanced air combat simula-

tions, aiming to improve the effectiveness of engagements

in dynamic scenarios.12–16 These studies explore various

aspects of BVR air combat, including weapon engagement,

evasion strategies, and cooperative tactics, all of which

contribute to a more comprehensive understanding of air

combat dynamics.

2.1. Engagement and escape zone strategies

The current study models predominantly integrate missile

information to define Dynamic Escape Zones (DEZ),

which refers to the region where the aircraft’s survivability

can be guaranteed through kinetic evasion maneuvers,17

and WEZ, which are also referred to as Dynamic Launch

Zones,18 Missile Attack Zones,19 or Launch Acceptability

Regions.20 The primary aim of WEZ models is to aid in

decision-making processes concerning weapon launch and

guidance support—through uplink updates—by outlining

the boundaries and operational effectiveness of air-to-air

missiles during target engagement. Two main methods are

traditionally used to calculate WEZ for various missile

configurations. The first method conducts ongoing flyout

simulations of the missile model during the engagement

period. The second, more widely used method performs

simulated flyouts in an offline setting, creating a lookup

table that incorporates the pre-simulated data. Upon

employing the WEZ model, interpolation is applied to this

data to produce outcomes that are not directly available in

the table.21

Several techniques have been developed for both col-

lecting the predefined data and for its subsequent interpo-

lation. However, notable advancements have also been

made in fields such as post-launch WEZ analysis, coopera-

tive modeling of WEZ, and algorithms for WEZ estima-

tion.4,22–24 These studies tailor WEZ concepts to specific

combat scenarios and maneuver types, often integrating

them with 3-degree-of-freedom (3-DOF) or 6-degree-of-

freedom (6-DOF) models.25 Solution methods for WEZ

calculations range from offline simulation algorithms to

polynomial, interpolation, and neural network fitting

algorithms.26

However, the DEZ definition aims to encompass essen-

tial elements of tactical decision-making from the perspec-

tive of missile avoidance. Techniques such as differential

game theory and principles like Minimum Evasive

Range27 or NEZ28 play a central role in differentiating

between aggressive and defensive tactics, as well as in

identifying the best timing for evasive actions.29,30 This

can be done either by analyzing missile miss distances in

one-on-one engagements or by considering multiple

incoming threats.31

2.2. Cooperative engagement models

While most of the earlier works focused on duel engage-

ments, there has been a shift toward modeling cooperative

engagement among multiple aircraft, particularly in sce-

narios involving Unmanned Combat Aerial Vehicles

(UCAVs).1 Cooperative engagement models extend WEZ

and DEZ strategies by introducing coordination between

multiple aircraft to enhance engagement effectiveness and

Dantas et al. 3



survivability. These models aim to optimize WEZ and

NEZ calculations using cooperative strategies, leveraging

algorithmic approaches to increase effectiveness in group

engagements.3 Furthermore, optimization methodologies

for attack positioning and cooperative tactics have been

proposed, incorporating offensive and defensive factors

for assessing the best maneuvers.32–34

2.3. Probabilistic modeling in BVR air combat

In recent years, there has been growing interest in incor-

porating probabilistic elements into BVR combat model-

ing, moving beyond traditional deterministic approaches.

Some works have used Bayesian Networks to create prob-

abilistic graphical models representing variables and their

conditional dependencies through a directed acyclic

graph.35 BVR combat can be divided into four phases:

position occupy maneuver, launch maneuver, midcourse

guidance, and terminal guidance. Utilizing Dynamic

Bayesian Networks (DBN), these studies encapsulate the

probabilistic relationships and uncertainties in each phase,

predicting the likelihood of a successful missile hit by con-

sidering aircraft positions, velocities, maneuvers, missile

specifications, and environmental conditions. Integrating

expert knowledge and data from air combat simulations

creates a temporal representation of the combat scenario.

Through DBN analysis, key determinants of missile suc-

cess probability are identified, and the Dynamic Attack

Zone (DAZ) is delineated—representing the region where

a missile launch is likely to result in a hit. This probabilis-

tic framework facilitates simulation and tactical analysis,

providing insights for optimizing missile deployment and

supporting decision-making under uncertainty in BVR

engagements.

2.4. Limitations in existing work

While the existing literature explores various dimensions

of WEZ determination, a noticeable gap exists regarding

incorporating the target’s maneuvering capabilities into

WEZ creation. Even some works that include probabilities

through Bayesian Networks do not show clear variability

in the target maneuvering, as the target makes a turn as

soon as it detects the threat of the incoming missile.35 Our

approach distinguishes itself by incorporating the concept

of maneuver probability into the process of determining

the WEZ, a feature absent in the studies we reviewed.

This innovative method extends beyond only considering

the initial dynamics and physical attributes of both the

missile and the aircraft. It proactively forecasts the adver-

sary’s potential maneuvers, transforming the WEZ from a

simple geometric entity into a dynamic probability distri-

bution that reflects the likelihood of the missile’s success-

ful engagement with the target. Our model furthermore

enhances this by incorporating the target’s behavior in a

probabilistic manner and providing a probability of

success through studying warhead lethality.

3. Methodology

This section examines the methodology encompassing the

missile launch simulator, the acquisition of simulation

data, and the preprocessing techniques applied to ensure

high-quality data sets. We thoroughly describe the input

variables and the steps taken to analyze and undersample

the data. We then elucidate the methods used to calculate

warhead lethality, which is integral to determining the

missile’s probability of kill based on its miss distance. The

development, training, and evaluation of supervised

machine learning models are discussed in depth, conclud-

ing with an assessment of their performance. Finally, we

explore the estimation of turn degree and delay, key fac-

tors in computing the probability of hitting a target with

the missile.

3.1. Missile launch simulator

In this research, we have developed an enhanced version

of the missile launch simulator, primarily based on our

previous work.4 Our simulator, implemented in R, models

the behavior of a Fox 3 missile, following a 5-DOF frame-

work as outlined in the Missile Handbook.11 This type of

missile, as defined in military terminology,36 is an ARH

(Active Radar Homing) missile, meaning it is equipped

with an autonomous seeker capable of tracking a target

after activation at a specific range.4 Through this simula-

tor, we are able to analyze and predict missile behavior

and performance under a variety of operational conditions,

providing valuable insights into missile-target interactions

in BVR air combat. Due to confidentiality and sovereignty

concerns, the missile model is under restricted access.

3.1.1. Guidance and navigation. The model’s core feature is

its guidance system, designed to emulate proportional

navigation. This ensures the missile maintains an optimal

trajectory relative to the moving target, adjusting its course

to align precisely according to its guidance law.

Furthermore, the simulator incorporates the possibility of

a loft maneuver—a sharp, upward trajectory immediately

after launch. This maneuver is critical in extending the

missile’s range and enhancing its probability of intercept-

ing distant targets.4

3.1.2. Target interaction. The simulation considers various

target behaviors, including both stationary and maneuver-

ing targets. One key aspect of the model is its ability to

simulate high-performance maneuvers of the target, such
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as the + 5 G maneuver depicted in Figure 2. The timing

of these maneuvers can be varied, allowing for a compre-

hensive analysis of missile performance under different

engagement scenarios. The data in Figure 3 offer insights

into the target’s behavior, illustrating sample metrics from

the simulation, including velocity, acceleration, altitude,

heading, and pitch, and showing how these maneuvers

impact the engagement.

3.1.3. Missile trajectory metrics. The simulation generates a

comprehensive analysis of missile trajectory metrics. One

notable aspect is the missile’s mass, which shows a consis-

tent decrease almost linearly during the boost phase. This

pattern aligns with the expected behavior of a dual-thrust

rocket motor, a critical feature in missile design.11,37 In

addition, the simulation reveals significant variations in

the missile’s angle of attack and pitch angle. These varia-

tions are especially pronounced during complex maneu-

vers such as the loft maneuver.38 The data depicted in

Figure 4 highlight these dynamics, providing a comprehen-

sive view of the missile’s performance metrics throughout

the simulation.

3.1.4. Flight dynamics. In the domain of flight dynamics,

the simulation includes detailed heading adjustments.

These adjustments are fine-tuned to simulate responses to

potential evasion tactics employed by a target, thereby

evaluating the missile’s adaptability in dynamic combat

environments. The model also tracks accelerations along

the East and North axes, adhering to the North-East-Down

(NED) coordinate system. This aspect of the simulation is

instrumental in assessing the missile’s response to both

loft maneuvers and evasive actions by the target. Another

key aspect studied is the velocity profile of the missile.

This profile demonstrates a characteristic increase during

the boost phase followed by a gradual decrease during the

sustain phase.39 Figure 4 also illustrates these aspects, pro-

viding additional insights into the missile’s adaptability

and performance in various dynamic scenarios.

3.1.5. Seeker behavior. The final aspect covered by the

simulation is the missile’s seeker behavior. The seeker

angle is particularly important, as it directly correlates with

the missile’s guidance system performance. This angle

reflects the adjustments made by the missile’s seeker in

following a proportional navigation path. Analyzing devia-

tions, especially from the off-boresight angle, provides

critical insights into the missile’s effectiveness, especially

in scenarios where the target employs advanced evasive

maneuvers.40

3.1.6. Visualization and debugging platform. The Aerospace

Simulation Environment, or Ambiente de Simulacxão

Aeroespacial (ASA) in Portuguese, serves as a critical

resource for the Brazilian Air Force, facilitating enhanced

missile launch visualization and debugging processes.41

This comprehensive C++ simulation framework, tailor-

made for Brazilian military applications, supports detailed

examinations and visualizations of various military opera-

tions, including missile launches. More than a tool for

basic training, ASA is key for executing complex, inte-

grated combat scenarios and is essential in testing and

validating tactical strategies. It provides a platform where

analysts and engineers can perform comprehensive assess-

ments and refine aerospace mechanisms and missions.

The missile model used in this research follows the

same structural framework as the model used in ASA.

This demonstrates the level of fidelity aimed for in this

work, ensuring consistency with established simulation

models in ASA. The ASA platform plays an essential role

in validating and debugging this missile model, as it incor-

porates other elements and behaviors into the scenario,

providing a more comprehensive environment for testing

and refinement.

The advanced functionalities of ASA lead to improved

accuracy in mission analysis and bolster reliability in

operational execution.42 Looking forward, the insights

gained from WEZ analyses in this research could be inte-

grated into more complex simulations within ASA, where

agents could make decisions based on a variety of

Figure 2. Missile engaging a target performing a + 5 G maneuver,
illustrating the missile’s adaptive trajectory in response to the
target’s high-G evasive actions.
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available models, thus enhancing the overall operational

readiness and tactical efficiency of the aerospace forces.

3.2. Simulation data

Initially, to generate the simulation data, we created simu-

lator input files using Latin Hypercube Sampling (LHS),

an efficient statistical method for designing experiments.

This method divides the space into a prespecified number

of sections and randomly samples one point from each.43,44

Unlike factorial designs, LHS offers a superior alternative

for populating the sample space more efficiently than

purely random methods.9,45 We employed LHS using the

AsaPy Library,46 a custom-made Python library associated

with ASA, specifically designed to optimize the analysis

of simulation data.

Both the shooter’s altitude (alt_sht) and velocity

(vel_sht) significantly impact the energy transferred to

the launched missile.5 The launch altitude (alt_sht)

influences the missile’s drag, thus affecting flight perfor-

mance.4 The shooter’s pitch (pit_sht), which is

defined with respect to the North-East plane, is crucial for

determining the missile’s initial angle post-launch, aiding

in the loft maneuver, which is the missile’s initial maneu-

ver after launch. The target’s velocity (vel_tgt) is sig-

nificant, as it determines the defensibility of the launched

missile. Two aspects are fundamental in terms of the

angles between the shooter and the target: heading and off-

boresight (Figure 5). The target’s heading (hdg_tgt)
indicates the direction taken to evade the missile with

respect to the North, while the off-boresight angle

(rgt_tgt), defined as the angle between the shooter’s

Figure 3. Metrics from the simulation include target velocity (North, East), acceleration (North, East), altitude, and heading over
time. Note that in this case, the target maneuver was considered to be leveled, and the target kept a constant altitude while evading
the missile, resulting in a flat altitude profile. There is also a delay time in the pilot’s reaction, causing all of the charts to present a
flat profile for the first few seconds.
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nose and the target, along with the target’s heading, reveals

whether the shooter aircraft is approaching the target and

thus the missile.47,48 In addition, the distance between the

shooter and the target (dist) is critical as it determines

the missile’s flight time and significantly influences the hit

probability. The target’s response time (delay) represents

the time before initiating a defensive maneuver. A longer

response time may force the target to execute more

aggressive maneuvers, which are characterized by a

higher turn degree (turn_dg) and greater acceleration

(load_factor). All measurements are taken with

respect to the center of mass of either the aircraft or the

missile.

The target’s response time (delay) represents the time

before initiating a defensive maneuver. Depending on how

long the target delays the response, it may need to perform

more aggressive maneuvers, characterized by a higher

turn degree (turn_dg) and greater acceleration

(load_factor). All measurements are taken with

respect to the center of mass of either aircraft or missile.

Table 1 illustrates the range for each parameter consid-

ered during the generation of samples. These parameters

were established based on the expertise of military fighter

pilots, serving as Subject Matter Experts (SMEs) in mili-

tary tactics, who identified critical values pertinent to the

scenario. This approach aligns with methodologies previ-

ously reported in similar studies focusing on input vari-

ables within this domain.4,21

Since the LHS method allows the user to specify the

desired sample points, we created 10 million different

input files. The authors used this work as an opportunity

to thoroughly test the simulator and work with a high-

fidelity model, considering the large number of variations

in input parameters and the potential for non-realistic com-

binations to arise. In addition, previous works by the

authors using the same simulator provided indications of

the necessity of a large volume of data to achieve reliable

and meaningful results. These 10 million input files gener-

ated an equal number of missile launch simulations, which

were executed using an Intel Xeon Silver 4210R CPU with

Figure 4. Simulation metrics for the missile, showing thrust, mass, lift, drag, total alpha, pitch, heading, Mach number, seeker angle,
and acceleration (X, Y, Z) over time.
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2.40 GHz and 128 GB of RAM. It took approximately

40 days to execute all the simulation runs. Each run gener-

ated an output file containing the missile’s miss distance

(miss_dist), measured in meters by the simulator, under

the respective input conditions. The miss distance is mea-

sured at the closest point of approach to the target aircraft

and represents the minimum separation distance between

the missile and its target.49 The large number of simula-

tions also allows for an effective downsampling process,

as described in the subsection, ensuring that a representa-

tive subset can be selected while maintaining the fidelity

of the original data.

While the LHS method ensures a well-distributed sam-

ple across the input parameter space, the simulation data

generated in this study is subject to certain limitations due

to assumptions and simplifications inherent in the model.

One such limitation is the idealized behavior of both the

shooter and target, which may not fully capture the com-

plexity of real-world engagements, such as pilot decision-

making under uncertainty or environmental factors like

varying weather conditions. In addition, some parameters,

such as missile dynamics, were modeled based on a con-

sistent structure, but without accounting for potential var-

iations in performance due to system degradation or other

operational constraints.

The simplifications in target response and maneuvering

behavior might also limit the accuracy of the model when

applied to diverse combat scenarios. Moreover, the com-

putational resources limited us to certain ranges and reso-

lutions of parameters, which might not entirely cover all

possible operational scenarios. These factors must be taken

into account when interpreting the results, as they could

impact the generalizability of the findings to different

environments and conditions. Despite these limitations,

the insights gained from this analysis provide a valuable

foundation, which could be further tested and validated

using more complex scenarios and comprehensive simula-

tion environments.

3.3. Preprocessing

Concerning the preprocessing step, we initially performed

an Exploratory Data Analysis (EDA) to identify the data

set’s general behaviors and obtain an introductory under-

standing of the data. This understanding allowed us to for-

mulate hypotheses and assess the need for new data

collections. The methods employed for this primary analy-

sis included descriptive statistics, histograms, box plots,

correlation, and outlier analysis.

In our study, we employed histograms and box plots to

understand the output variable’s distribution and behavior

across simulations and identify initial outliers in the sam-

ples. A crucial aspect of our analysis was the investigation

of correlations among variables to detect multicollinearity,

which can significantly impair the efficacy of supervised

machine learning algorithms.50 Notably, we observed a

substantial correlation between the Target turn degree

(turn_dg) and Target acceleration (load_factor).
This finding is particularly relevant, suggesting the redun-

dancy of one of these variables. Therefore, we propose

eliminating load_factor from the set of input variables

to optimize the performance of our future machine learn-

ing models.

Furthermore, we employed a downsampling technique

on the initial LHS design to examine potential outliers in

the data collected. Identifying outliers and inadequate data

Figure 5. Diagram illustrating the heading, off-boresight, and
pitch angles between two aircraft in aerial maneuvering with
respect to their centers of mass (CM).

Table 1. Input simulation data with the respective intervals.

Parameter Min Max Unit

Shooter altitude (alt_sht) 1,000 45,000 ft
Shooter velocity (vel_sht) 300 700 kt
Shooter pitch (pit_sht) − 30 30 deg
Target altitude (alt_tgt) 1,000 45,000 ft
Target velocity (vel_tgt) 300 700 kt
Target heading (hdg_tgt) − 180 180 deg
Target off-boresight (rgt_tgt) − 60 60 deg
Distance shooter-target (dist) 5 45 NM
Target response time (delay) 15 30 s
Target turn degree (turn_dg) 0 180 deg
Target acceleration (load_factor) 1.5 5 G (m/s2)
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in a data set is arguably one of the most challenging parts

of the preprocessing stage, and it is always a topic to be

explored cautiously.51 Based on subject matter expert

knowledge, we defined the variable intervals but did not

control the combination of values generated for each para-

meter. As a result, we could produce some improbable

input variables. For instance, an aircraft at 1,000 ft launch-

ing a missile at a target at 45,000 ft is extremely rare from

an operational perspective since a pilot would most likely

increase altitude before shooting.4 We manually removed

these disfavored samples, such as the one presented, to

prevent confusion in the model. For more details, check

the code associated with the EDA methods (EDA code:

https://github.com/jpadantas/poker/tree/main/eda).

3.4. Warhead lethality

The lethality of a proximity-fuzed warhead, represented

by the probability of kill (Pkill), depends on the conditions

at the time of detonation and the relative position between

the warhead and the target aircraft. The Pkill function esti-

mates the likelihood that an aircraft is destroyed given the

detonation of the warhead.49 This probability is influenced

by several factors, including fragment velocity, density of

fragment dispersion, and the miss distance.

Figure 6 illustrates how increasing the detonation dis-

tance reduces the effectiveness of the warhead. The ideal

lethal radius represents the optimal distance for maximum

lethality, while the declining effectiveness curve shows

how the kill probability decreases as the detonation dis-

tance deviates from this optimal value.49

3.4.1. Factors affecting warhead lethality. The lethality of a

proximity-fuzed warhead is determined by various factors

that influence how effectively the warhead fragments

impact the target. Key factors include the following:

• Miss Distance: The proximity of the warhead at

detonation to the target is the primary factor affect-

ing the probability of kill. A smaller miss distance

generally leads to a higher likelihood of target

destruction, while a larger miss distance reduces

effectiveness.
• Fragment Distribution and Density: The arrange-

ment and density of the fragments around the explo-

sive affect how many fragments are likely to impact

the target. In this study, the pre-formed fragments

are arranged in a brickwork pattern, which opti-

mizes coverage and ensures a consistent fragment

distribution.
• Fragment Initial Velocity: The initial velocity of the

fragments post-detonation, which depends on the

Gurney constant and the explosive characteristics,

determines how far the fragments travel and their

ability to penetrate the target structure.
• Warhead and Explosive Properties: The material

composition, dimensions, and explosive character-

istics (e.g. detonation velocity and explosive mass)

collectively impact the lethality.

3.4.2. Modeling the physical properties of the warhead. To

calculate Pkill, it is necessary to accurately model the war-

head’s physical properties. Table 2 presents the structural,

fragment, and explosive properties of the warhead used in

this study.

The properties presented in Table 2 form the foundation

for understanding the warhead’s behavior during detona-

tion, which is essential for modeling its effectiveness. Each

key parameter contributes to the warhead’s ability to distri-

bute fragments and ultimately destroy the target. The data

are organized as follows:

• Explosive Data: The warhead uses PBX-9404, a

high-energy explosive with a density (ρe) and deto-

nation velocity (D). The explosive mass (Me),

Gurney constant (G), and the initiation point (X2)

are key factors in determining the velocity and

energy imparted to the fragments upon detonation.

Figure 6. Impact of detonation distance on warhead lethality.
The figure shows the relationship between detonation distance
and Pkill for a proximity-fuzed warhead. The lethal radius
represents the optimal distance for maximum lethality,
contrasted with the decreasing kill probability as the distance
increases.
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• Material Data: The warhead casing is made from

mild steel, providing sufficient strength to contain

the explosive until detonation. The density (ρ) of

the steel is used to calculate structural mass and

other characteristics relevant to energy transfer dur-

ing detonation.
• Geometric Data: Geometric properties such as

structural diameter (Ds), internal diameter (Di), and

effective length (Le) determine the size and volume

of both the warhead structure and the explosive

content. These dimensions influence explosive

power and fragment distribution.
• Pre-formed Fragment Data: The fragments are pre-

formed as spherical mild steel pieces and arranged

in a brickwork pattern. This arrangement ensures

uniform fragment dispersion. Parameters include

fragment diameter (AO), distance between fragment

centers (OB), and sphere mass (msph). The total

number of fragments (Nsph) and their combined

mass (Msph) are essential for assessing lethality.
• Fragment Initial Velocity (V0): Using the Gurney

equation, the initial velocity of the fragments (V0)

is estimated. This velocity is critical for determin-

ing how far and how fast the fragments will travel

toward the target, which directly impacts Pkill.

In summary, the combination of explosive, material,

geometric, and fragment properties forms the foundation

of the warhead’s lethality model. These data points will be

integrated into subsequent probabilistic models to evaluate

Pkill under varying combat scenarios, providing a compre-

hensive assessment of the warhead’s effectiveness.

3.4.3. Warhead performance metrics. The initial velocity

(V0) of the warhead fragments post-detonation is deter-

mined using the Gurney equation

V0 =G ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C=M

1+ 0:5 ·C=M

s
, ð1Þ

where G is the Gurney constant of the explosive, and C=M

is the ratio of the explosive mass to the total mass of the

warhead’s structural components and fragments.

In addition, static ejection angles are necessary for

determining the initial dispersion of the fragments. These

angles represent the directional pattern of fragment ejec-

tion relative to the warhead, influenced by the warhead’s

design and explosive-structure interaction. Understanding

these angles helps optimize fragment spread for maximum

target coverage.

3.4.4. Endgame condition determination. In this stage, the

model considers operational flight conditions at the

moment of detonation. The conditions include the

following:

• Missile Velocity (Vm): Determines the additional

kinetic energy imparted to the fragments, influen-

cing their relative velocity to the target.
• Target Velocity (Vt): Affects the relative speed and

encounter geometry, impacting the likelihood of

fragment impact.
• Miss Distance: The predicted closest distance

between the missile and the target at detonation,

directly affecting Pkill by determining how many

fragments can reach the target.
• Altitude: Influences air density, affecting drag on

the fragments and their ability to penetrate the

target.

Table 2. Missile’s warhead data including structural, fragment,
and explosive properties.

Variable Value Unit

Explosive Data

Explosive Type PBX-9404 -
Explosive Density (ρe) 1,710 kg=m3

Explosive Mass (Me) 8.94 kg
Detonation Velocity 9,500 m/s
Gurney Constant (G) 2,895 m/s
Initiation Point (X2) 100 mm
Charge-to-Mass Ratio (C=M) 0.65 -
Fragment Initial Velocity (V0) 2,028 m/s

Material Data

Material Mild Steel -
Density (ρ) 7,850 kg=m3

Geometric Data

External Diameter 178 mm
Skin Thickness 2 mm
Structural Diameter (Ds) 154 mm
Internal Diameter (Di) 144 mm
Structural Thickness (Ts) 5 mm
Effective Length (Le) 321 mm
Structural Mass (Ms) 5.90 kg

Pre-formed Fragment Data

Type Sphere -
Pattern Brickwork -
Diameter or Distance (AO) 10 mm
Distance (OB) 8.66 mm
Sphere Mass (msph) 0.0041 kg

Number of Spheres

Total Number (Nsph) 1,909 -
Total Mass of Spheres (Msph) 7.85 kg
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3.4.5. Endgame dynamics computation. The endgame

dynamics involve computing dynamic ejection angles and

fragment velocities relative to the missile’s trajectory to

predict the interaction with the target. Unlike static ejec-

tion angles, dynamic ejection angles consider missile velo-

city at detonation, modifying the trajectory of each

fragment.

The relative velocity of each fragment with respect to

the moving target is calculated to assess the likelihood of

impact. This velocity depends on the initial velocity of the

fragment (V0), missile velocity (Vm), and target velocity

(Vt). The computed relative velocity and ejection angles

allow for the estimation of the distance each fragment will

travel post-detonation, which is crucial for assessing their

ability to reach and penetrate the target.

3.4.6. Fragment spray density and lethality assessment. The

fragment spray density represents the concentration of

fragments within the target zone, a key factor in determin-

ing lethality. The density of fragment saturation directly

influences the number of impacts on the target, affecting

Pkill.

Several factors are combined to evaluate lethality,

including the following:

• Drag Coefficient (CD) and Air Density (ρ): These

parameters affect how quickly fragment velocity

decreases due to air resistance. A higher air density

or drag coefficient results in greater velocity reduc-

tion, reducing penetration likelihood.
• Impact Velocity: The impact velocity of the frag-

ments determines their ability to inflict damage

upon reaching the target. This velocity is influenced

by the drag experienced during flight.

The lethality assessment combines these factors to esti-

mate the probability of kill per fragment hit, ultimately

leading to the overall kill probability for each fragment.

3.4.7. Computation of final probability of kill. For the calcula-

tion of Pkill in this work, it was assumed that all missile

launches used consistent values for key parameters. The

intrinsic missile parameters, which are assumed to remain

constant across different simulations, include fragment ini-

tial velocity V0 = 2, 028 m/s, effective length Le = 321

mm, internal diameter Di = 144 mm, structural diameter

Ds = 154 mm, and fragment diameter AO= 10 mm.

However, the parameters that may vary depending on

the simulation context are the missile velocity Vm = 592

m/s, target velocity Vt = 250 m/s, target wingspan of

8.13 m, and the angle between trajectories, which was set

to 0 radians for this study. This distinction helps clarify

which parameters are intrinsic to the missile type and

which are subject to change depending on the specific

conditions of the simulation.

Since these parameters remain constant for all launches,

the miss distance becomes the primary factor influencing

the variation in Pkill. This assumption simplifies the model,

allowing us to focus on optimizing warhead lethality based

on detonation distance.

The final Pkill integrates the structural and explosive

characteristics of the warhead with dynamic ejection anal-

ysis and fragment lethality assessment. This probability

provides a statistical measure of the warhead’s effective-

ness and its likelihood of achieving its intended destruc-

tive outcome upon the target.

This model integrates principles from materials science,

ballistics, aerodynamics, and probability theory to predict

warhead performance, from detonation to target impact.

By incorporating the miss distance obtained from the simu-

lation, we transform this distance into a Pkill value, enhan-

cing the model’s predictive capacity. Such an approach is

important for optimizing warhead configurations to maxi-

mize their efficacy. Interested readers can refer to the code

for lethality calculations available at the following reposi-

tory (Lethality code: https://github.com/jpadantas/poker/

tree/main/lethality).

3.5. Supervised machine learning models

We created supervised machine learning models using a

subset of the initially proposed input variables, excluding

the load_factor variable, as mentioned previously, to

develop a regression model capable of predicting the mis-

sile Pkill, which was calculated from the data set based on

the miss distance from the target, using the lethality theory

described in the previous subsection. Notably, variables

such as turn_dg and delay are not directly available to

the launcher and require assumptions for their estimation.

These variables will be addressed in detail in a later sub-

section. We employed three distinct algorithms to build

the models: Polynomial Regression (PR), Artificial Neural

Networks (ANN), and Extreme Gradient Boosting

(XGBoost).

Before starting creating and training the models, we

performed a stratified train-validate-test split for all super-

vised machine learning algorithms regarding 34 different

probability blocks (bins) using Doane’s formula,52 allocat-

ing 80% for training and validation using a 5-fold cross-

validation technique and 20% for testing, following the

approach proposed in previous works.4,26 This data set

separation will allow the evaluation of the machine learn-

ing models later.

PR extends the linear model by adding extra predictors

obtained by raising each original predictor to a determined

degree. Adding polynomial terms to the linear model can

effectively allow the model to identify nonlinear
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patterns.53 The degree of the polynomial controls the num-

ber of features added. Using a degree greater than four is

unusual because the polynomial curve can become overly

flexible and take on some unusual shapes.54 We proposed

three different models with degrees from one to three

using the Scikit-learn library.55 For additional information,

refer to the code associated with the PR models (PR code:

https://github.com/jpadantas/poker/tree/main/pr).

ANN seeks to approximate the function represented by

the data set, calculating the error between the predicted

outputs and the expected outputs and minimizing this error

during the training process, working as function approxi-

mation machines that are designed to achieve statistical

generalization.56 In this work, we used a multi-layer per-

ceptron using the backpropagation algorithm, adjusting the

weights of the connections between ANN neurons to mini-

mize the mean-squared error loss.57 We performed data

scaling to equally distribute the importance of each input

in the ANN learning process.58 We used a min-max scaler,

transforming all data features to a range from 0 to 1.59 For

the ANN model, we utilized TensorFlow60 to run 50 dif-

ferent hyperparameters configurations, changing the num-

ber of hidden layers in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the

number of units in {16, 32, 64, 128, 256}. All nodes have

a rectified linear activation function (ReLU).56 In addition,

we included the Adaptive Moment Estimation (Adam)

optimizer, a well-known training algorithm for ANN.61

Adam is a stochastic gradient descent method based on

adaptive estimation of first- and second-order moments

function.62 We typically should choose a batch size

between one and a few hundred. For a given computa-

tional cost, small batch sizes achieve the best training sta-

bility and generalization performance across diverse

experiments.63 We selected 32 as the model’s batch size,

considered a reasonable default value.64

XGBoost, a leading gradient boosting framework, is

engineered to construct a robust ensemble of decision trees

by iteratively correcting errors from previous trees, thereby

enhancing the model’s accuracy for regression, classifica-

tion, and ranking tasks and is considered the state-of-the-

art for tabular data, as evidenced by its widespread adop-

tion and superior performance in various competitions and

applications.65 In our study, we leveraged an extensive

array of hyperparameters, including n_estimators set

to an ambitious 1,000,000 trees for comprehensive data

exploration, and max_depth options ranging in {10, 12,

14, 16, 18, 20}, enabling the model to uncover complex

patterns without excessively increasing complexity. The

learning rate was varied across {0.01, 0.1, 0.2, 0.3, 0.4},

balancing the convergence speed with the solution’s accu-

racy. Alongside this, subsampling and feature sampling

rates were set using subsample, colsample_bytree,

and colsample_bylevel, which were varied in the

range from 0.5 to 1.0 with a step size of 0.1, to enhance

model generalization. In addition, min_child_weight
and gamma parameters were finely adjusted to regulate

the model’s growth and complexity, with min_child_-
weight in {1, 3, 5} and gamma in {0.0, 0.1, 0.2, 0.3,

0.4}. For further insights, please consult the code for the

XGBoost models (XGBoost code: https://github.com/jpa-

dantas/poker/tree/main/xgboost).

For both the ANN and XGBoost models, we implemen-

ted an early-stopping mechanism to oversee the training

phase efficiently. This strategy entailed continuous moni-

toring of performance metrics on the validation set to

detect any stagnation in improvement. We defined

‘‘patience’’ as the maximum number of epochs to continue

training without observing any advancement in the valida-

tion set’s metrics, setting this threshold at 10 epochs. This

specific interval proved to be balanced for mitigating the

effects of noise within the model optimization processes,

ensuring that both models ceased training at a juncture that

prevented overfitting while maximizing performance.56

The choice of machine learning models in this study

was made to provide a balanced comparison between sim-

plicity and performance. We included PR as a simpler

baseline model, which we anticipated would be faster to

train but likely result in lower performance compared to

more complex models. This choice allowed us to under-

stand the trade-offs between model complexity and accu-

racy in our context. The ANN and XGBoost models were

selected as they are well-known for their effectiveness with

tabular data and are frequently used for achieving high pre-

dictive metrics in such scenarios. This combination of

models ensured a comprehensive evaluation of different

approaches, ranging from simpler to more sophisticated

techniques, thereby providing valuable insights into model

performance under different levels of complexity.

3.6. Models evaluation

Since this work analyzed a regression problem, we evalu-

ated all the supervised machine learning models using the

following well-known metrics: Mean Absolute Error

(MAE), Mean Squared Error (MSE), Root Mean Squared

Error (RMSE), and the Coefficient of Determination (R2).

In addition, training and inference time are two critical

aspects of a model’s assessment. We analyzed each cross-

validation fold’s training time and calculated each model’s

inference time on the test data set. While training time is

important, inference time is even more important as it

directly impacts the model’s practical applicability in real-

time scenarios. We can estimate which model offers the

best trade-off between performance and computational

cost by examining these factors.
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3.7. Estimating turn degree and delay

Estimating the turn_dg and delay for a model presents

significant challenges due to the inherent unpredictability

of a target’s response to an incoming missile. This unpre-

dictability is largely attributed to the unique characteristics

and decision-making processes of the target, which can

vary widely in real-world scenarios. Understanding and

predicting how a target will maneuver in response to a per-

ceived threat is critical for accurate simulation and assess-

ment of missile engagement outcomes.

To address this challenge, we employ the expertise of

SMEs in military tactics and missile defense systems to

estimate the potential turn_dg and delay of a target

upon missile detection. The approach leverages the deep

understanding of SMEs regarding the behavior of various

targets under threat, allowing for a more informed and rea-

listic set of estimations.

These parameters are essential for modeling the target’s

evasive maneuvers and the subsequent trajectory adjust-

ments of the missile. We represent the target’s response

variability using normal distributions for both turn_dg
and delay. The choice of a normal distribution is based

on the assumption that the target’s response will vary

around a mean value (median) with a certain degree of

predictability, as influenced by the target’s characteristics

and situation. These distributions’ median and standard

deviation are determined through a collaborative process

with SMEs, ensuring that the estimations reflect a realistic

range of target behaviors.

The estimation process involves the identification of

specific scenarios in which a target might find itself when

a missile is launched toward it. Each scenario is carefully

analyzed to determine the likely response of the target,

focusing on two key parameters: the turn_dg and

delay before initiating the turn.

To estimate the turn_dg of the target, we assume that

the target will adopt the most defensive posture possible,

always attempting to move in the direction opposite to the

missile launcher. Regardless of the distance between the

missile launcher and the target, the target aircraft will aim

to maximize the separation by performing a defensive turn

of up to 180�, whenever feasible. This approach ensures

that the target consistently prioritizes evasion by moving

away from the threat to the greatest extent possible.

The initial value of the target’s turn degree is defined

by the following function

turn dg0 = rgt tgt+180ð Þmod 360ð Þ � 180: ð2Þ

To illustrate the initial value of the defensive behavior

of the targets, Figure 7 presents 10 diverse and well-spread

scenarios, where each target attempts to perform a defen-

sive maneuver aimed at maximizing separation from the

launcher. The distances, initial headings, and off-boresight

angles were chosen to ensure a good distribution in space,

avoiding overlap and facilitating visualization of the

maneuvers. Each target, represented by the red point, per-

forms a turn to move away from the launcher (the blue

point at the center) according to the suggested direction

indicated by the red arrow, in an effort to maximize eva-

sion. The turn degree (turn_dg0) is represented by the

blue arc and varies according to the relative position of the

target to the launcher

turn dg=turn dg0 1+0:05 ·wð Þ, ð3Þ

where turn_dg0 is the value calculated from Equation 2,

and w∼N 0, 1ð Þ represents a standard normal random

variable. This introduces a 5% variation, which accounts

for natural fluctuations in the target’s maneuver.

Moreover, regarding the variable delay, we anticipate

specific behaviors based on the target’s orientation relative

to the missile launcher. While we initially assumed that

shorter reaction times would occur when the target directly

faces the launcher due to the immediate perception of the

threat, we acknowledge that this is not always the case.

Figure 7. Illustration of 10 diverse scenarios of defensive turn
maneuvers. Each scenario shows a target attempting to
maximize distance from the launcher. The dark red points
(smaller) indicate the initial position of the target, while the
orange (thinner) and red arrows (thicker) represent the initial
heading and the suggested turn direction, respectively. The dark
circle (larger) represents the shooter. The blue arc indicates the
turn degree (turn dg) performed by the target, which varies
between 0� and 180�.
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The reaction time depends on various factors, including

the target’s sensor capabilities and engagement strategy.

For instance, even when the launcher is positioned behind

the target, a Radar Warning Receiver (RWR) may imme-

diately detect the radar, leading to a prompt response.

To simplify this context, we made certain assumptions

about the target’s behavior. Specifically, we structured the

estimated reaction times within a range of 15 to 30 s. This

range is further segmented into three distinct intervals,

each spanning 5 s, to reflect varying degrees of threat

awareness and response times. These intervals are divided

into 120� each to cover the full 360� range, ensuring that

all possible orientations are accounted for. Each interval is

associated with a standard deviation value of approxi-

mately 5%, which ensures the three curves are almost con-

nected, allowing for comprehensive sampling of all

potential values. Please refer to Figure 8 for a detailed

visualization of the considered scenarios and the corre-

sponding distributions for delay.

To validate the chosen values for the median and stan-

dard deviation, we employ the face validation method.66

This method involves a review by an independent group

of experts who assess the plausibility and accuracy of the

estimations based on their own experience and knowledge.

The face validation process ensures that the estimations

are not only based on a solid theoretical foundation but

also resonate with the practical insights of seasoned pro-

fessionals in the field.

It is important to note that the parameters and distribu-

tions outlined in this section adhere to the intervals and

assumptions previously described in this work. By lever-

aging SME knowledge and employing rigorous validation

techniques, we aim to provide a robust framework for esti-

mating turn_dg and delay, thereby enhancing the

accuracy of missile engagement simulations. The valida-

tion process was conducted through face validation by

SMEs with extensive experience in missile engagements.

Specifically, several simulated scenarios were presented to

the SMEs, covering a range of engagement distances,

target maneuvers, and missile launches. The SMEs evalu-

ated whether the estimated turn_dg and delay values

aligned with their operational experience and expectations

under different combat situations. This process ensured

that the estimated values were realistic and consistent with

real-world operational behavior.

3.8. The probability of hitting a target

Determining the final probability of hitting a target is intri-

cately linked to the analysis performed by machine learn-

ing algorithms. These algorithms are designed to process a

comprehensive set of input variables derived from the air-

craft’s subsystems, providing the pilot with actionable

intelligence to enhance missile targeting accuracy.

However, a critical component of this targeting process is

the estimation of the target’s turn_dg and delay,

which are not directly observable and must be inferred

through the methodology outlined previously.

This estimation plays an essential role in calculating

the hit probability, accounting for the variability in the tar-

get’s response behavior. By incorporating the target’s

expected maneuvers, the machine learning model can

adjust its predictions to better reflect the dynamic nature

of aerial engagements. The aim is to achieve a conserva-

tive estimation of the target’s performance, ensuring that

the probability of a hit considers the best possible maneu-

vers the target could execute to evade the missile.

To this end, the model leverages the variability in the

target’s behavior as an essential factor, allowing for a bet-

ter understanding of potential evasive actions. This

approach is grounded in the principle of anticipating opti-

mal target performance, where the target utilizes its cap-

abilities to the maximum extent to evade incoming threats.

By assuming a high level of performance from the target,

the model inherently considers the target to perform well

on average, thereby minimizing the risk of underestimat-

ing the target’s evasive capabilities.

Integrating this realistic estimation into the machine

learning algorithm enhances the reliability of the hit prob-

ability calculation. It enables the algorithm to account for

the widest possible range of target behaviors, including

those that may occur under extreme conditions. This

approach ensures the pilot has a probability of hit that

reflects the most challenging engagement scenarios, facili-

tating informed decision-making during missile launch

sequences.

In summary, the probability of hitting a target is not

merely a static figure derived from straightforward inputs;

it is a dynamic estimation that incorporates the complexity

and unpredictability of aerial combat. By integrating con-

servative estimations of the target’s turn_dg and delay
into the machine learning response, we aim to improve the

accuracy and realism of missile engagement outcomes.

Figure 8. Graph illustrating the target’s delay time as a
function of its orientation with respect to the shooter.
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However, we acknowledge the limitations of the current

approach, and further empirical validation is required to

fully demonstrate the practical benefits of these estima-

tions. This ongoing work lays the foundation for future

studies that will more comprehensively assess the impact

of these estimations on aerial defense strategies.

4. Results and analysis

This section examines the metrics of the test data set for

the proposed machine learning models. In addition, we

provide a Multi-Function Display (MFD) representation,

incorporating the traditional maximum range and no-

escape zone indicators along with the probability of kill in

the WEZ indication based on the proposed probabilistic

model.

4.1. Comparative analysis of the machine learning
models

Table 3 summarizes the mean performance metrics for

each model across the five folds of the three distinct pro-

posed models: PR, ANN, and XGBoost. These metrics

include MAE, MSE, RMSE, and R2, reflecting their

respective best hyperparameter settings, chosen based on

performance on the validation data set during training. It

is important to note that the predicted variable, Pkill, is

expressed as a percentage. Consequently, all the error

metrics (MAE, MSE, RMSE) are dimensionless, as they

are derived from percentage values. In addition, R2 is also

dimensionless. The analysis further includes computa-

tional efficiency metrics, such as training and inference

time, both measured in seconds, using the training/valida-

tion and test data sets, respectively.

4.2. Statistical analysis

To determine whether the observed differences in model

performance are statistically significant, we performed the

Friedman test67 followed by the Nemenyi post hoc test68

for multiple comparisons. Interested readers can refer to

the code for the statistical analysis at the following reposi-

tory (Statistics code: https://github.com/jpadantas/poker/

tree/main/statistics).

4.2.1. Friedman test. The Friedman test was used to detect

differences in performance across the three models using

the results from 5 folds of each model. The null hypothesis

is that there are no differences in the performance metrics

among the models. Table 4 presents the results of the

Friedman test for each metric.

The results indicate that for all metrics except inference

time, there are statistically significant differences among

the models (p-value < 0.05). Notably, the p-values for

several metrics (MAE, MSE, RMSE, and R2) are identical,

suggesting that the models perform similarly across these

related metrics. This similarity could be due to the fact that

these metrics are strongly correlated, and the relatively

Table 4. Friedman test results.

Metric Friedman statistic p-value

MAE 10.0 0.0067
MSE 10.0 0.0067
RMSE 10.0 0.0067
R2 10.0 0.0067
Training Time 8.4 0.0150
Inference Time 4.8 0.0907

Significant p-values are highlighted in bold red text.

Table 3. Comparative evaluation of machine learning models based on the proposed metrics.

Model PR ANN XGBoost

Hyperparameters degree = 4 hidden_layers = 3,
units = 128

max_depth = 14,
learning_rate = 0.01,
subsample = 0.9,
colsample_bytree = 0.9,
colsample_bylevel = 0.6,
min_child_weight = 5,
gamma = 0.1

MAE 11.52 2.33 5.04
MSE 296.26 51.90 117.14
RMSE 17.21 7.20 10.82
R2 67.94 94.38 87.31
Training Time (s) 532.23 4,722.17 6,098.33
Inference Time (s) 9.57 6.65 8.20

The best results for each metric are highlighted in bold red text.
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small sample size (5 folds) may limit the ability of the

Friedman test to distinguish nuanced differences between

models. In addition, the identical Friedman statistics for

these metrics imply that the rankings across models were

consistent, reflecting similar performance trends.

4.2.2. Nemenyi post hoc test. To identify which models dif-

fer significantly from each other, we conducted the

Nemenyi post hoc test. Table 5 shows the p-values for

pairwise comparisons among the models for the metrics

where the Friedman test was significant. Note that the

inference time metric did not show significant differences

in the Friedman test; therefore, the Nemenyi test was not

conducted for this metric.

The Nemenyi post hoc test results, shown in Table 5,

indicate that significant differences primarily occurred

between PR and ANN. For XGBoost, its comparisons with

both PR and ANN resulted in similar p-values across multi-

ple metrics. This suggests that XGBoost’s performance was

relatively stable and consistently fell between the other two

models. This pattern might reflect limited differentiation

capability given the inherent relationships among the metrics

and the modest sample size, highlighting that larger samples

might be needed to detect finer performance differences.

5. Discussion

The statistical analysis confirms that the choice of model

has a significant impact on performance metrics and train-

ing time. The Friedman test indicated statistically signifi-

cant differences among the models for MAE, MSE,

RMSE, R2, and Training Time (p-value < 0.05). The

Nemenyi post hoc test further identified that

• For MAE, MSE, RMSE, and R2, ANN significantly

outperformed PR (p-value = 0.0045).
• No significant differences were found between

XGBoost and PR, or XGBoost and ANN for these

metrics.
• For Training Time, PR had a significantly shorter

training time than XGBoost (p-value = 0.0123).
• No significant differences were found between PR

and ANN, or XGBoost and ANN for Training

Time.

These results suggest that ANN provides superior pre-

dictive accuracy compared to PR, with a statistically sig-

nificant improvement in error metrics. Although ANN’s

training time was longer than PR’s, the difference was not

statistically significant between ANN and PR, indicating

that the increased computational cost is acceptable given

the performance gains.

Among the models tested, ANN exhibited the lowest

error metrics across all considered measures. Specifically,

ANN achieved the lowest MAE (2.33), suggesting its pre-

dictions were closer to the actual values on average com-

pared to PR and XGBoost. Similarly, ANN recorded the

lowest MSE (51.90) and RMSE (7.20), indicating a strong

capability to minimize both variance and bias in its predic-

tions. The R2 value for ANN stood at 94.38%, demonstrat-

ing that it could explain a substantial portion of the

variance in the data set, which indicates strong predictive

power.

Regarding computational efficiency, PR had the short-

est training time (532.23 s), which was significantly

shorter than that of XGBoost (6,098.33 s) as indicated by

the Nemenyi test (p-value = 0.0123). ANN’s training time

(4,722.17 s) was not significantly different from either PR

or XGBoost. In terms of inference time, ANN was the

fastest (6.65 s), slightly quicker than XGBoost (8.20 s)

and PR (9.57 s).

Specifically for the ANN, Figure 9 illustrates a com-

parative analysis of the neural network’s performance

metrics, demonstrating the best results among the evalu-

ated models. The three-dimensional surface plots capture

how various configurations of model units and layers

affect both model accuracy, measured by the mean R2

value, and the inference time required for predictions. Plot

(a) demonstrates that the relationship between the number

of units and layers significantly impacts accuracy, indicat-

ing an interplay between model depth and performance.

Plot (b) shows an increase in inference time with more

complex models, emphasizing the need to consider com-

putational efficiency alongside model precision. These

visualizations highlight the balance that must be struck in

neural network architecture design to optimize both per-

formance and efficiency.

Table 5. Nemenyi post hoc test p-values for pairwise
comparisons among models.

Metric Comparison p-value

MAE PR vs ANN 0.0045
XGBoost vs PR 0.2541
XGBoost vs ANN 0.2541

MSE PR vs ANN 0.0045
XGBoost vs PR 0.2541
XGBoost vs ANN 0.2541

RMSE PR vs ANN 0.0045
XGBoost vs PR 0.2541
XGBoost vs ANN 0.2541

R2 PR vs ANN 0.0045
XGBoost vs PR 0.2541
XGBoost vs ANN 0.2541

Training Time XGBoost vs PR 0.0123
PR vs ANN 0.1394
XGBoost vs ANN 0.6008

Significant p-values are highlighted in bold red text.

16 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)



XGBoost achieved moderate accuracy metrics with an

MAE of 5.04, MSE of 117.14, RMSE of 10.82, and an R2

of 87.31%. While its error metrics were higher than those

of ANN, the differences were not statistically significant

according to the Nemenyi test (p-value = 0.2541 for

XGBoost vs PR and p-value = 0.2541 for XGBoost vs

ANN). XGBoost’s performance was acceptable and it may

serve as a robust alternative, especially in contexts where

ensemble methods are preferred. Its inference time (8.20 s)

was shorter than PR’s but slightly longer than ANN’s, with

no significant differences detected.

The simplicity of PR resulted in lower predictive per-

formance compared to more advanced models. Its error

metrics were significantly higher than those of ANN, as

confirmed by the Nemenyi test (p-value = 0.0045 for PR

vs ANN). PR lagged behind, with the highest MAE

(11.52), MSE (296.26), RMSE (17.21), and the lowest R2

value (67.94%). These results highlight the limitations of

PR in capturing complex patterns within the data set, espe-

cially when compared to models like ANN and XGBoost,

which are better suited for such complexity.

Note that discrepancies in computational times may be

due to differences in library implementations, as PR and

ANN were implemented using different libraries, which

could impact their computational efficiency.

In summary, the statistical analysis confirms that ANN

provides significantly better predictive accuracy compared

to PR, without a significant increase in training time.

While XGBoost did not show significant differences com-

pared to the other models, it offers a balance between per-

formance and computational efficiency. These findings

can guide practitioners in selecting the appropriate model

based on the specific requirements of accuracy and com-

putational efficiency, considering both statistical signifi-

cance and practical performance metrics.

5.1. Enhanced weapon engagement zone
representation

We introduce an enhanced MFD visualization for the

WEZ, integrating a probabilistic model that encompasses

the traditional maximum range and no-escape zone indica-

tors and a novel probability of kill aspect within the WEZ

indications. By applying the proposed probabilistic model,

we adjusted the target’s off-boresight angles from �60� to

+ 60�. The enhanced WEZ visualization, depicted in

Figure 10, now incorporates Pkill, offering a more

(a) (b)

Figure 9. Comparative analysis of neural network performance metrics. (a) illustrates how model configurations, varying in units
and hidden layers, impact accuracy through the mean R2 value. (b) delineates the effect of model complexity on inference time,
measured in seconds.

Figure 10. Enhanced MFD representation incorporating the
integration of Pkill alongside the maximum range and no-escape
zones, providing a multifaceted view of the engagement zone to
support informed decision-making in missile launch scenarios.
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comprehensive understanding of the engagement zone.

Incorporating this metric alongside traditional WEZ

metrics may improve a pilot’s situational awareness and

decision-making capabilities, particularly in controlled

scenarios. However, this potential benefit is heavily

dependent on model assumptions and requires further vali-

dation for broader applicability. This integration can possi-

bly support pilots in making more informed decisions

regarding missile launches against potential targets by pro-

viding a clearer assessment of the likelihood of success-

fully engaging a target under various conditions. Including

a probabilistic kill probability metric may aid in optimiz-

ing the use of onboard weaponry by evaluating the tactical

viability of a missile launch, thus enhancing operational

effectiveness and minimizing resource loss.

6. Conclusion and future work

In conclusion, this work presents PoKER, an innovative

probabilistic model for WEZ analysis in BVR air

combat scenarios. By extending beyond traditional WEZ

metrics to include a probability of kill calculation,

PoKER enhances the precision and relevance of missile

engagement assessments. This integration may improve

the pilot’s situational awareness and decision-making cap-

abilities by providing a better understanding of engage-

ment outcomes. The capability of PoKER to offer real-

time, accurate estimations of missile effectiveness based

on dynamic combat conditions and target behavior repre-

sents a notable advancement in air combat strategy and

planning. Its application not only can enhance operational

efficiency and effectiveness but also contributes to the

optimal use of onboard weaponry, thus minimizing

resource loss and maximizing engagement success.

For future work, we advocate the utilization of data

derived from real training missile launches, whether from

virtual simulations or live exercises, to refine the modeling

of target behavior. The introduction of human-in-the-loop

simulations could significantly enhance the model’s prac-

tical application by aligning theoretical predictions more

closely with real-world decision-making processes.

Furthermore, the adoption of advanced machine learning

techniques promises to make WEZ modeling more

adaptive to changing combat conditions. Enhancements in

missile simulation accuracy, alongside investigations

into the impact of environmental variables and electronic

warfare, could offer deeper insights into engagement

strategies. Moreover, developing methods to predict adver-

sary tactics and countermeasures accurately will greatly

improve PoKER’s strategic utility. In addition, creating a

representation of how to maneuver into regions of higher

probability could inform pilots on effective maneuvers

before a missile launch.

We also agree that evaluating the data set size is an

important contribution, especially for the scalability of

future work. While 10 million simulations were feasible

for this study due to available computational resources, we

acknowledge that this may not be practical for all scenar-

ios. Therefore, we suggest exploring methods to reduce

the data set size without compromising model fidelity,

such as using efficient sampling techniques or selecting a

subset of representative points. This could help balance

computational costs while maintaining the quality of the

analyses.

Furthermore, we plan to conduct empirical studies to

validate the overall effectiveness of the proposed model

across different scenarios. These studies will provide valu-

able insights into the model’s strengths and limitations in

varied operational contexts. While these studies will help

assess the model’s applicability, incorporating such esti-

mations into real-world systems will require further inves-

tigation, which we suggest as a direction for future work

as well. The ultimate goal is to demonstrate the utility of

PoKER in enhancing situational awareness and decision-

making for both autonomous agents and human pilots, par-

ticularly in scenarios involving AI-driven adversaries.

By integrating such predictive capabilities, pilots can

make more informed decisions, enhancing their engage-

ment strategies. Such efforts can solidify the model’s foun-

dational strength and expand its applicability in addressing

the complexities of modern air combat. By pushing the

boundaries of current WEZ models, this study contributes

to academic understanding and offers practical insights for

military strategists and defense technology developers.
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Brazil: Instituto Tecnológico de Aeronáutica (ITA). https://
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