Autonomous Pop-Up Attack Maneuver Using Imitation Learning

Joao P. A. Dantas

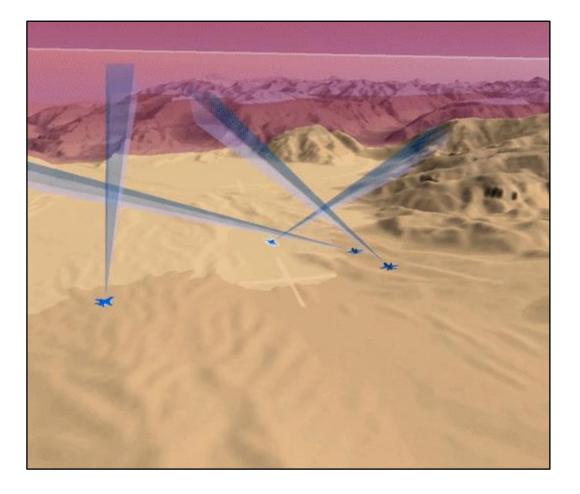
Aeronautics Institute of Technology

jpdantas@ita.br www.joaopadantas.com

Motivation

Autonomous systems are widely adopted in military applications.

Roles include surveillance, reconnaissance, and combat engagement.

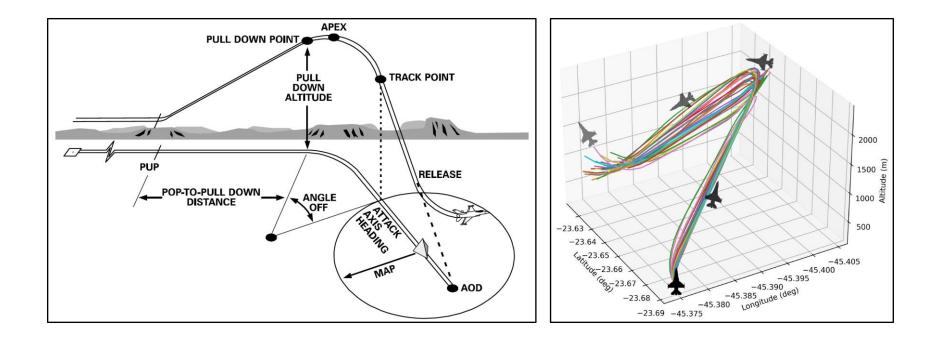

It provides strategic benefits but challenges in replicating human-level proficiency.

Behavior cloning, an imitation learning technique, aims to replicate human decision-making in complex tasks.

Main contributions:

Development of a **BC-based autonomous pop-up attack model**.

Improve the understanding of **autonomous** systems in dynamic air combat operations.



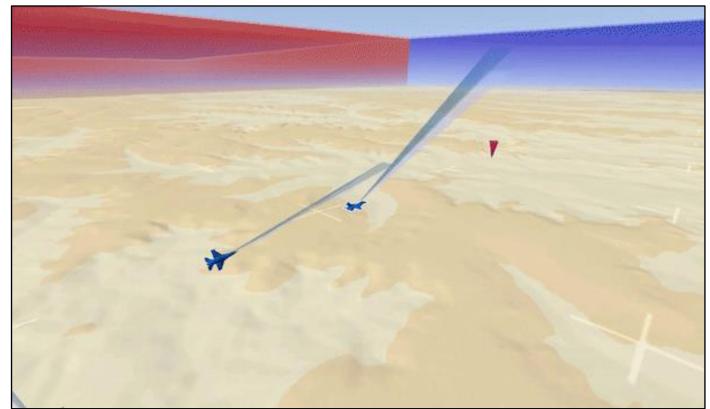
Pop-up Attack Maneuver

Critical air-to-ground air combat technique.

Involves rapid ascent, target engagement, and quick descent.

Requires precision and adaptability under extreme conditions.

Simulation Data


30 flight recordings of pop-up attack maneuvers.

Executed by a Brazilian Air Force fighter pilot.

Data collected using AEROGRAF, a 6DOF flight simulator.

Based on the F-16 Fighting Falcon dynamic model.

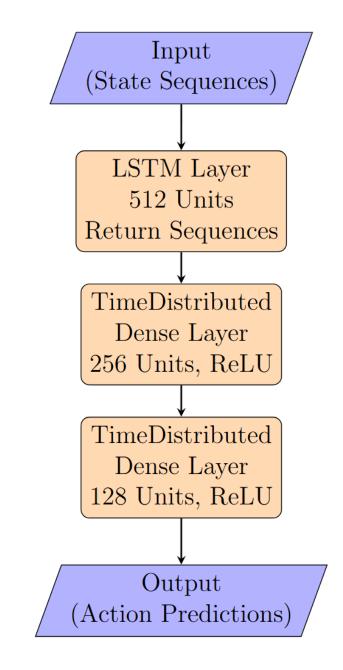
All flights start from the same point, **5.9** NM from the target, with a **146**-meters altitude difference.

State and Actions

Variable	Units	Description	Туре
ALT (m)	Meters	Altitude in meters	State
Phi (deg)	Degrees	Pitch angle (positive for nose-up)	State
Theta (deg)	Degrees	Roll angle (positive for left roll)	State
Psi (deg)	Degrees	Yaw angle	State
Vx (m/s)	Meters/second	Velocity in the pitch direction	State
Vy (m/s)	Meters/second	Velocity in the roll direction	State
Vz (m/s)	Meters/second	Velocity in the yaw direction	State
P (deg/s)	Degrees/second	Pitch angular velocity	State
Q (deg/s)	Degrees/second	Roll angular velocity	State
R (deg/s)	Degrees/second	Yaw angular velocity	State
Nx (m/s ²)	Meters/second ²	Lateral acceleration	State
Ny (m/s ²)	Meters/second ²	Longitudinal acceleration	State
Nz (m/s ²)	Meters/second ²	Vertical acceleration	State
Radial (deg)	Degrees	Radial angle	State
Distance (m)	Meters	Distance in meters	State
DeltaAlt:Anv-Tgt (m)	Meters	Altitude difference between aircraft and target	State
JX	_	Positive for nose-up pitch	Action
JY	_	Positive for left roll	Action
Throttle	_	Throttle position	Action

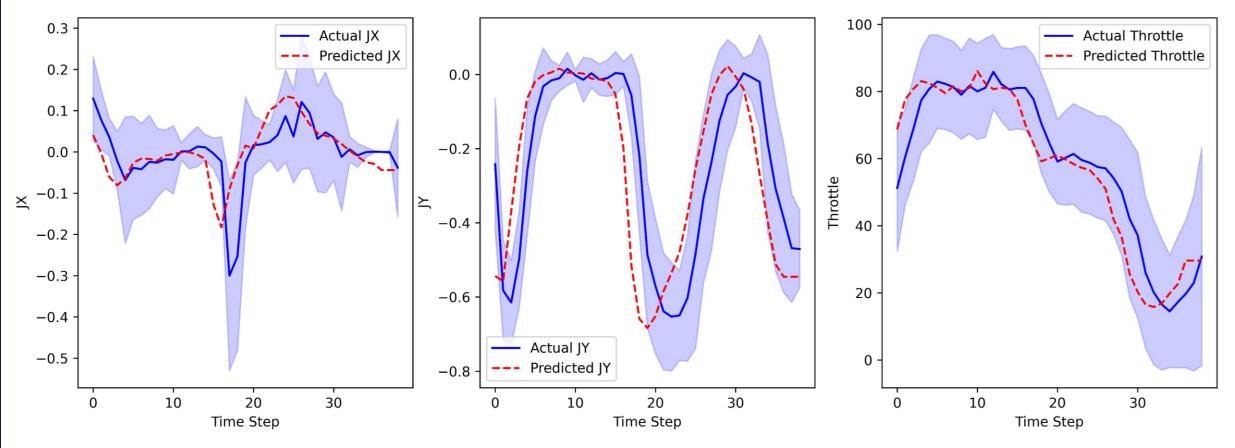
Imitation Learning Model

Used Long Short-Term Memory (LSTM) networks for sequential data.


Training employed **5-fold cross-validation** with **early stopping** and optimized with the **Adam** optimizer.

Performance evaluated using **RMSE** and **R²** metrics.

Best model selected for detailed analysis.


Generated flight trajectories using a **sliding window approach**.

Predictions compared to actual maneuvers based on mean and standard deviation of actions.

Results

Trajectory Comparison: Actual vs Predicted with Mean and Standard Deviation

R² of **0.73** and an RMSE of **1.55** on the test group

Conclusion and Future Work

Developed a model to replicate the pop-up attack maneuver in air combat using real fighter pilot data.

The model effectively predicted aircraft control inputs, mimicking an experienced pilot.

Future work includes:

Expanding the dataset with diverse pilot profiles and strategies and explore additional air combat maneuvers.

Using generative learning to create synthetic data, aiming to improve accuracy in autonomous combat scenarios.

Testing new imitation learning models – we have already conducted experiments with the **Gated Recurrent Unit (GRU)** and achieved better results compared to the LSTM.