Autonomous Pop-Up Attack Maneuver Using Imitation Learning

Introduction

- Autonomous systems are becoming increasingly integral to military operations due to their ability to perform diverse roles:
- **Surveillance:** Monitoring areas of interest to detect potential threats or gather intelligence. • **Reconnaissance:** Collecting detailed information about enemy positions, terrain, and movement.
- **Combat engagement:** Participating in offensive or defensive missions, often requiring real-time decision-making.
- These systems provide significant **strategic advantages**, such as reducing risks to human personnel and enabling rapid responses in dynamic scenarios.
- Despite these advantages, achieving human-level proficiency in decision-making, adaptability, and situational awareness remains a challenge.
- Imitation learning methods, such as behavior cloning, are employed to replicate **human expertise** by learning from expert demonstrations (Hussein et al., 2017).
- Behavior Cloning (BC), a specific imitation learning approach, focused on replicating human decision-making.
- Integrating these systems offers opportunities to improve combat efficiency and **coordination** between **human operators** and **autonomous agents**.

Contributions

- Development of a BC-Based Autonomous Pop-Up Attack Model: Implemented a BC model to enable an autonomous agent to perform a precise pop-up attack maneuver, replicating the human pilot behavior. Investigated the performance and adaptability of autonomous systems in
- Enhanced Understanding of Autonomous Systems in Dynamic Air Combat: highly dynamic air combat environments.

Pop-up Attack Maneuver

- Critical air-to-ground air combat technique (Figure 1), essential for modern military operations where precision and speed are key to mission success. • Designed to maximize the probability of successfully striking a ground target
- by optimizing the attack trajectory and minimizing vulnerabilities.
- Involves a rapid ascent to achieve an advantageous position, followed by precise target engagement to neutralize threats, and concluding with a quick **descent** to minimize exposure to enemy defenses (Wang et al., 2022).
- Requires exceptional precision in maneuvering and targeting, combined with **adaptability** to react dynamically under extreme conditions.

Figure 1. Flight profile for offset pop-up delivery. Source: Foo et al. (2009)

Joao P. A. Dantas

Aeronautics Institute of Technology

Simulation Data

- **30 flight recordings** of pop-up attack maneuvers, providing an initial dataset for analysis and modeling (Figure 2).
- Executed by a **Brazilian Air Force** fighter pilot, ensuring realistic and operationally relevant flight dynamics.
- Data collected using AEROGRAF, a **6DOF flight simulator** designed for high-fidelity simulation of aircraft.
- Based on the F-16 Fighting Falcon dynamic model, widely recognized in air combat scenarios.
- All flights begin from the **same point**, positioned **5.9 NM** from the target, with a **146-meters** altitude difference.

State and Action Spaces

- The state vectors, defined relative to the aircraft's body frame, included key variables: altitude, pitch, roll, and yaw angles, along with the radial angle, distance to the target, and altitude difference between the aircraft and the target.
- The action vectors represented the control inputs commanded by the pilot, including **pitch**, **roll**, and **throttle**, reflecting the pilot's direct influence on the aircraft's trajectory.

Table 1. State and action variables used in the imitation learning model.

Variable	Units	Description	Туре
ALT (m)	Meters	Altitude in meters	State
Phi (deg)	Degrees	Pitch angle (positive for nose-up)	State
Theta (deg)	Degrees	Roll angle (positive for left roll)	State
Psi (deg)	Degrees	Yaw angle	State
Vx (m/s)	Meters/second	Velocity in the pitch direction	State
Vy (m/s)	Meters/second	Velocity in the roll direction	State
Vz (m/s)	Meters/second	Velocity in the yaw direction	State
P (deg/s)	Degrees/second	Pitch angular velocity	State
Q (deg/s)	Degrees/second	Roll angular velocity	State
R (deg/s)	Degrees/second	Yaw angular velocity	State
Nx (m/s²)	Meters/second ²	Lateral acceleration	State
Ny (m/s²)	Meters/second ²	Longitudinal acceleration	State
Nz (m/s²)	Meters/second ²	Vertical acceleration	State
Radial (deg)	Degrees	Radial angle	State
Distance (m)	Meters	Distance in meters	State
DeltaAlt:Anv-Tgt (m)	Meters	Altitude difference between aircraft and target	State
JX		Positive for nose-up pitch	Action
JY		Positive for left roll	Action
Throttle	_	Throttle position	Action

Figure 2. Adjusted flight data for the 30 flights of the pop-up attack maneuver executed by the human pilot.

- Used Long Short-Term Memory (LSTM) networks to capture temporal dependencies effectively (Figure 3).
- Training conducted with 5-fold cross-validation, incorporating early **stopping** for regularization.
- Performance evaluation utilized Root Mean Squared Error (RMSE) and Coefficient of Determination (R^2) .
- Flight trajectories generated using a sliding window approach to handle time-series predictions (Figure 4).

	١	Ninc	low											$(\vee$
⊢				-										
t_0	t_1	t ₂ Pre	t_3 t_3	4 te	t_5 d A	t_6	t_7	t_8	t_9	t_{10}	t_{11}	t_{12}	t_{13}	t_{14}

Figure 4. Sliding window approach with overlapping sequences to predict flight trajectory.

Conclusion and Future Work

- data colleted from a **high-fidelity flight simulator**.
- actions of an experienced pilot.
- Future work includes:

Pek Hui Foo, Gee Wah Ng, Khin Hua Ng, and Rong Yang. 2009. Application of Intent Inference for Air Defense and Conformance Monitoring. Journal of Advances in Information Fusion (JAIF) 4, 1 (2009), 3–26.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. 2017. Imitation Learning: A Survey of Learning Methods. ACM Comput. Surv. 50, 2, Article 21 (apr 2017), 35 pages. https://doi.org/10.1145/3054912 Huan Wang, Xiaofeng Liu, and Xu Zhou. 2022. Autonomous UAV Interception via Augmented Adversarial Inverse Reinforcement Learning. In Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), Meiping Wu, Yifeng Niu, Mancang Gu, and Jin Cheng (Eds.). Springer, Singapore, 2073–2084. https: //doi.org/10.1007/978-981-16-9492-9_205

Imitation Learning Model

Results

• Best model performance: Attained an R² of 0.73 and an RMSE of 1.55 on the test group, confirming the model's ability to generalize effectively.

Figure 5. Trajectory Comparison – Actual vs Predicted with Mean and Standard Deviation.

• **Developed a model** to replicate the **pop-up attack maneuver** using real pilot

• The model showed potential to **predict aircraft control inputs**, mimicking the

• **Expanding the dataset** with diverse pilot profiles, while exploring additional maneuvers. • Using generative learning to create synthetic data, aiming to improve the model accuracy. Testing alternative imitation learning models, including the Gated Recurrent Unit (GRU).

References