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Introduction

Autonomous systems are becoming increasingly integral to military operations
due to their ability to perform diverse roles:

Surveillance: Monitoring areas of interest to detect potential threats or gather intelligence.

Reconnaissance: Collecting detailed information about enemy positions, terrain, and

movement.

Combat engagement: Participating in offensive or defensive missions, often requiring

real-time decision-making.

These systems provide significant strategic advantages, such as reducing risks

to human personnel and enabling rapid responses in dynamic scenarios.

Despite these advantages, achieving human-level proficiency in

decision-making, adaptability, and situational awareness remains a challenge.

Imitation learning methods, such as behavior cloning, are employed to replicate

human expertise by learning from expert demonstrations (Hussein et al., 2017).

Behavior Cloning (BC), a specific imitation learning approach, focused on

replicating human decision-making.

Integrating these systems offers opportunities to improve combat efficiency

and coordination between human operators and autonomous agents.

Contributions

Development of a BC-Based Autonomous Pop-Up Attack Model:

Implemented a BC model to enable an autonomous agent to perform a

precise pop-up attack maneuver, replicating the human pilot behavior.

Enhanced Understanding of Autonomous Systems in Dynamic Air Combat:

Investigated the performance and adaptability of autonomous systems in

highly dynamic air combat environments.

Pop-up Attack Maneuver

Critical air-to-ground air combat technique (Figure 1), essential for modern

military operations where precision and speed are key to mission success.

Designed to maximize the probability of successfully striking a ground target

by optimizing the attack trajectory and minimizing vulnerabilities.

Involves a rapid ascent to achieve an advantageous position, followed by

precise target engagement to neutralize threats, and concluding with a quick

descent to minimize exposure to enemy defenses (Wang et al., 2022).

Requires exceptional precision in maneuvering and targeting, combined with

adaptability to react dynamically under extreme conditions.

Figure 1. Flight profile for offset pop-up delivery. Source: Foo et al. (2009)

Simulation Data

30 flight recordings of pop-up attack

maneuvers, providing an initial dataset

for analysis and modeling (Figure 2).

Executed by a Brazilian Air Force

fighter pilot, ensuring realistic and

operationally relevant flight dynamics.

Data collected using AEROGRAF, a

6DOF flight simulator designed for

high-fidelity simulation of aircraft .

Based on the F-16 Fighting Falcon

dynamic model, widely recognized in

air combat scenarios.

All flights begin from the same point,

positioned 5.9 NM from the target,

with a 146-meters altitude difference.

Figure 2. Adjusted flight data for the 30 flights of

the pop-up attack maneuver executed by the

human pilot.

.

State and Action Spaces

The state vectors, defined relative to the aircraft’s body frame, included key

variables: altitude, pitch, roll, and yaw angles, along with the radial angle,

distance to the target, and altitude difference between the aircraft and the

target.

The action vectors represented the control inputs commanded by the pilot,

including pitch, roll, and throttle, reflecting the pilot’s direct influence on the

aircraft’s trajectory.

Table 1. State and action variables used in the imitation learning model.

Variable Units Description Type

ALT (m) Meters Altitude in meters State

Phi (deg) Degrees
Pitch angle (positive for

nose-up)
State

Theta (deg) Degrees Roll angle (positive for left roll) State

Psi (deg) Degrees Yaw angle State

Vx (m/s) Meters/second Velocity in the pitch direction State

Vy (m/s) Meters/second Velocity in the roll direction State

Vz (m/s) Meters/second Velocity in the yaw direction State

P (deg/s) Degrees/second Pitch angular velocity State

Q (deg/s) Degrees/second Roll angular velocity State

R (deg/s) Degrees/second Yaw angular velocity State

Nx (m/s2) Meters/second2 Lateral acceleration State

Ny (m/s2) Meters/second2 Longitudinal acceleration State

Nz (m/s2) Meters/second2 Vertical acceleration State

Radial (deg) Degrees Radial angle State

Distance (m) Meters Distance in meters State

DeltaAlt:Anv-Tgt (m) Meters
Altitude difference between

aircraft and target
State

JX – Positive for nose-up pitch Action

JY – Positive for left roll Action

Throttle – Throttle position Action

Imitation Learning Model

Used Long Short-Term Memory

(LSTM) networks to capture temporal

dependencies effectively (Figure 3).

Training conducted with 5-fold

cross-validation, incorporating early

stopping for regularization.

Performance evaluation utilized Root

Mean Squared Error (RMSE) and

Coefficient of Determination (R²).

Flight trajectories generated using a

sliding window approach to handle

time-series predictions (Figure 4).
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Figure 3. Architecture of the proposed LSTM

model.
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Figure 4. Sliding window approach with overlapping sequences to predict flight trajectory.

Results

Best model performance: Attained an R² of 0.73 and an RMSE of 1.55 on the

test group, confirming the model’s ability to generalize effectively.

Figure 5. Trajectory Comparison – Actual vs Predicted with Mean and Standard Deviation.

Conclusion and FutureWork

Developed a model to replicate the pop-up attack maneuver using real pilot

data colleted from a high-fidelity flight simulator.

The model showed potential to predict aircraft control inputs, mimicking the

actions of an experienced pilot.

Future work includes:
Expanding the dataset with diverse pilot profiles, while exploring additional maneuvers.

Using generative learning to create synthetic data, aiming to improve the model accuracy.

Testing alternative imitation learning models, including the Gated Recurrent Unit (GRU).
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